ISSN   1004-0595

CN  62-1224/O4

Advanced Search
ZHU You-li, WANG Yan-Li, BIAN Fei-Long, HOU Shuai, YANG Hong-Jun. Re-examining the Origins of Contact Fatigue Failure of Involute Cylindrical Spur Gears[J]. TRIBOLOGY, 2014, 34(6): 722-728.
Citation: ZHU You-li, WANG Yan-Li, BIAN Fei-Long, HOU Shuai, YANG Hong-Jun. Re-examining the Origins of Contact Fatigue Failure of Involute Cylindrical Spur Gears[J]. TRIBOLOGY, 2014, 34(6): 722-728.

Re-examining the Origins of Contact Fatigue Failure of Involute Cylindrical Spur Gears

More Information
  • Received Date: March 13, 2014
  • Revised Date: May 09, 2014
  • Published Date: November 24, 2014
  • The origins of contact fatigue failure of involute cylindrical spur gears were investigated via surface failure analysis combined with finite element stress analysis. Results show that greater relative sliding, maximum exhausted frictional work and exposed to frictional stress greater than that during the second double tooth meshing,contributed to the densely covered surface pitting of the dedendum surface from the gear-in point to the lowest point of single tooth contact. Heavy spalling or subsurface initiated pitting in the dedendum surface close to the pitch line was resulted from the maximum Hertzian contact shear stress of maximum distance below surface and the impact as a result of disengagement of the foregoing meshing tooth. Shallower spalling in the surface immediately after the gear-in point was related to the impact of gear-in,shallower and relatively larger subsurface maximum shear stress and maximum relative sliding,and was promoted by the surface pitting in this region.
  • [1]
    T Tallian. Failure atlas for hertz contact machine elements[M]. 2nd Edition. ASME Press,1992.
    [2]
    张俊华,王丹,皮亚南. 闭式齿轮传动齿面疲劳点蚀和剥落的分析[J]. 江西科学,2003,21(1):53-56.

    Zhang J H,Wang D,Pi Y N. Analysis of gear surface pitting and spalling of fatigue in the close gear driven[J]. Jiangxi Science,2003,21(1):53-56.
    [3]
    S Way. Pitting due to rolling contact [J]. J Appl Mech Trans,ASME,1935,2:A49-A58.
    [4]
    L M Keer, M D Bryant. A pitting model for rolling contact fatigue [J]. ASME J of Lubrication Technology,1983,105:198-205.
    [5]
    A F Bower. The influence of crack face friction and trapped fluid on surface-initiated rolling contact fatigue cracks[R]. Trans ASME,Jot,Vol 110,1988.
    [6]
    Y Ding,B T Kuhnell. The physical cause of spalling in gears[R]. Machine Condition Monitoring,The Research Bulletin of the Centre for Machine Condition Monitoring,Vol 9,Monash University,1997.
    [7]
    T Kim,A V Olver. Stress history in rolling-sliding contact of rough surfaces[J]. Tribol Int,1998,31(12): 727-736.
    [8] ANSYS Inc,Release 14.5 Documentation for ANSYS?此文献格式不对,信息不全,请查证.
    [9]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 渐开线圆柱齿轮承载能力计算方法. 涂装前钢材表面粗糙度等级的评定. GB/T 3480-1997[S]. 中国标准出版社出版,1997.

    General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China(AQSIQ),Standardization Administration of the People's Republic of China(SAC).Calculation methods of load capacity for involute cylindrical gears. GB/T 3480-1997[S]. Beijing: Standards Press of China,1991.
    [10]
    廖海平,曾翠华. 考虑齿间滑动摩擦的齿轮接触疲劳强度计算[J]. 机械设计与制造,2007,(9):11-13.

    Liao H P,Zeng C H. Calculation of gearing contact fatigue strength considering sliding friction between teeth [J]. Machinery Design & Manufacture,2007,(9):11-13.
    [11]
    贾小攀,王文中,赵自强. 斜齿轮弹流润滑下的接触疲劳寿命计算[J].摩擦学学报,2014,34(1):8-14.

    Jia X P,Wang W Z,Zhao Z Q. A contact fatigue model of helical gear under elastohydrodynamic lubrication[J].Tribology,2014,34(1):8-14.
    [12]
    M A Muraro,F Koda,U Reisdorfer Jr,et al. The influence of contact stress distribution and specific film thickness on the wear of spur gears during pitting tests[J]. J of the Braz Soc of Mech Sci & Eng,2012,34(2):135-144.
    [13]
    王优强,李鸿琦,佟景伟,等. 渐开线直齿圆柱齿轮非稳态弹流润滑分析[J]. 中国机械工程,2004,15(10): 852-856.

    Wang Y Q,Li H Q,Tong J W,et al. Non-stationary elastohydrodynamic lubrication analysis of an involute spur gear[J]. China Mechanical Engineering,2004,15(10):852-856.
    [14]
    王文中,操鸿,胡纪滨. 渐开线斜齿轮非稳态弹流润滑数值模拟研究[J]. 摩擦学学报,2011,31(6): 604-609.

    Wang W Z,Cao H,Hu J B. Numerical simulation of transient elastohydrodynamic lubrication of helical gears[J]. Tribology,2011,31(6):604-609.
  • Cited by

    Periodical cited type(10)

    1. 禹英杰,张宇,王岩,岗海明,周奕君. 齿轮接触疲劳试验研究综述. 内燃机与配件. 2024(20): 106-109 .
    2. 王雄,董庆兵,史修江,魏静,秦毅,冯成程,罗振涛. 基于多轴疲劳准则的齿轮点蚀寿命预测. 摩擦学学报. 2023(01): 92-103 . 本站查看
    3. 赵洋,肖洋,孙皓,霍文浩,冯松,廖勇. 基于围道积分的润滑接触齿轮微点蚀损伤特征模拟. 吉林大学学报(工学版). 2022(04): 799-810 .
    4. 王龙,唐修检,汪刘应,阳能军,刘顾,油银峰,刘国浩. 20CrMnTi钢齿轮磨削表面的摩擦磨损试验研究. 工具技术. 2021(04): 69-72 .
    5. 朱增宝,龚明针,王东雨,鲍和云,朱如鹏. 基于弹性势能的多模数直齿轮副接触应力分析. 安徽理工大学学报(自然科学版). 2021(03): 58-63 .
    6. 任唯贤,李国龙,李彪. 连续展成磨削小半径齿顶圆角的多刀逼近法. 制造技术与机床. 2019(06): 34-40 .
    7. 向龙,方宗德,关亚彬,胡升阳. 含安装误差斜齿轮接触应力混合分析法. 哈尔滨工程大学学报. 2019(10): 1767-1775 .
    8. 唐效贵,王斌,李佩鸿,陈辛波. 基于复杂润滑状态的直齿锥齿轮啮合效率分析. 机械传动. 2017(07): 33-41 .
    9. 朱有利,倪永恒,侯帅,孙寒骁. 电力机车主传动齿轮轴油孔孔角超声冲击强化处理. 装甲兵工程学院学报. 2017(06): 112-115+120 .
    10. 孔霞,蔡云龙. RPG行星减速器齿面应力均化分析. 机械设计与制造工程. 2015(03): 79-82 .

    Other cited types(9)

Catalog

    Article views (1834) PDF downloads (1730) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return