Citation: | YANG Mingming, ZHANG Zhaozhu, YUAN Junya, JIANG Wei, LI Peilong, LIU Weimin. Research Status and Prospect of Self-Lubricating Fabric Composites and Their Applications in Self-Lubricating Spherical Plain Bearings[J]. Tribology, 2024, 44(3): 396−420. DOI: 10.16078/j.tribology.2024050 |
The self-lubricating spherical plain bearing is a kind of spherical plain bearing with special structure, and its sliding contact surface is composed of the outer sphere of the inner ring and the inner sphere of the outer ring. The self-lubricating function of the bearings is mainly realized by spraying, plating or bonding solid lubricating materials on the moving surface of bearings. Due to their simple structure, strong load-bearing capacity, high reliability, wear resistance, low friction and maintenance-free performance (no grease required) , self-lubricating spherical plain bearings are widely used in aviation, aerospace, ships, national defense equipment, heavy machinery, industrial equipment and other fields . In the field of aviation, self-lubricating spherical plain bearings are very important components in key motion systems such as fixed-wing aircraft landing gear system, flaperon, helicopter rotor system and difficult maintenance position of aircraft engine. In space equipment, self-lubricating spherical plain bearing are used in robotic arms, hatch doors, antennas and other moving mechanisms of space station and satellite equipment. In the automotive industry, bearings are mainly used in the suspension system to reduce the friction of the suspension system and improve the stability and comfort of the suspension. In the field of heavy machinery and equipment, self-lubricating spherical plain bearing are mainly used in joints and joint parts of industrial robots, hydraulic generators, turbines and mining machinery to reduce friction and extend maintenance cycle. However, with the continuous improvement of the ultimate performance of the above equipment, higher and higher requirements are put forward for the service life, reliability and tribological performance of self-lubricating spherical plain bearing. The performance of self-lubricating materials between the inner and outer rings of bearings has a very important impact on the service performance and reliability of joint bearings, mainly including metal matrix composite materials, solid self-lubricating coatings/films, reinforced polymers and self-lubricating fiber fabric materials .
This article starting from a tribological perspective, summarized the current research on self-lubricating fibrous composite materials used in self-lubricating spherical plain bearings. This included enhanced fibers, weaving processes, test conditions, function-enhancing materials and fiber-resin interface modifications. Additionally, the article introduced the life evaluation of self-lubricating plain bearings, covering bearing test specifications and product standards, bearing life testing and prediction, as well as factors influencing bearing life and reliability. Finally, it provided an outlook on the future key research directions for fibrous composite self-lubricating lining materials and self-lubricating spherical plain bearings.
[1] |
Aguirrebeitia J, Abasolo M, Vallejo J, et al. Methodology for the assessment of equivalent load for self-lubricating radial spherical plain bearings under combined load[J]. Tribology International, 2017, 105: 69–76. doi: 10.1016/j.triboint.2016.09.028.
|
[2] |
任忠海. 王庆华, 王黎钦, PTFE纤维织物衬套应用的研究, 黑龙江纺织, 2002, (1): 3–5
Ren Zhonghai, Wang Qinghua, Wang Liqin. Research on Application of the PTFE fabric bush[J]. Heilongjiang Textile, 2002, (1): 3–5
|
[3] |
Ishikawa T, Chou T W. Thermoelastic analysis of hybrid fabric composites[J]. Journal of Materials Science, 1983, 18(8): 2260–2268. doi: 10.1007/BF00541828.
|
[4] |
Su Fenghua, Zhang Zhaozhu, Wang Kun, et al. Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(9): 1351–1357. doi: 10.1016/j.compositesa.2005.08.017.
|
[5] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. High-temperature tribological performance of hybrid PTFE/Nomex fabric/phenolic composite[J]. Composites Science and Technology, 2014, 104: 146–151. doi: 10.1016/j.compscitech.2014.09.011.
|
[6] |
郭芳, 张招柱, 苏峰华, 等. 聚四氟蜡和二硫化钼填充凯夫拉纤维织物复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2007, 27(2): 137–141]. doi: 10.3321/j.issn:1004-0595.2007.02.009.
Guo Fang, Zhang Zhaozhu, Su Fenghua, et al. Study on tribological properties of kevlar fabric composites filled with PFW and MoS2[J]. Tribology, 2007, 27(2): 137–141 doi: 10.3321/j.issn:1004-0595.2007.02.009
|
[7] |
Xu Mingkun, Zhang Jing, Li Song, et al. Significantly enhanced tribological properties of PTFE/PEEK fabric composites by macroporous metal–organic frameworks with solid–liquid synergistic lubrication[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107935. doi: 10.1016/j.compositesa.2023.107935.
|
[8] |
Xue Yahong, Yan Shicheng, Xie Jiang, et al. Contact and tribological properties of self-lubricating ellipsoidal plain bearings[J]. Tribology International, 2019, 140: 105840. doi: 10.1016/j.triboint.2019.105840.
|
[9] |
胡萍, 姜明. 聚四氟乙烯芳纶纤维密封润滑材料结构表征[J]. 润滑与密封, 2006, 31(6): 133–134,153]. doi: 10.3969/j.issn.0254-0150.2006.06.042.
Hu Ping, Jiang Ming. Structure characterization of PTFE/aramid fiber composite material for seal and lubrication[J]. Lubrication Engineering, 2006, 31(6): 133–134,153 doi: 10.3969/j.issn.0254-0150.2006.06.042
|
[10] |
沈雪瑾, 曹磊, 陈有光, 等. 织物衬垫自润滑关节轴承的研究现状与展望[J]. 轴承, 2009, (3): 57–61]. doi: 10.19533/j.issn1000-3762.2009.03.018.
Shen Xuejin, Cao Lei, Chen Youguang, et al. Research status and prospect of spherical plain bearings with self-lubricating fabric liner[J]. Bearing, 2009, (3): 57–61 doi: 10.19533/j.issn1000-3762.2009.03.018
|
[11] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Graphene oxide-grafted hybrid-fabric composites with simultaneously improved mechanical and tribological properties[J]. Tribology Letters, 2018, 66(1): 28. doi: 10.1007/s11249-017-0978-6.
|
[12] |
Zhang Zhaozhu, Su Fenghua, Wang Kun, et al. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles[J]. Materials Science and Engineering: A, 2005, 404(1-2): 251–258. doi: 10.1016/j.msea.2005.05.084.
|
[13] |
司明明, 王文东, 王飞, 等. 先进核电自润滑向心关节轴承试验扭矩传递设计[J]. 轴承, 2019, (7): 50–56]. doi: 10.19533/j.issn1000-3762.2019.07.012.
Si Mingming, Wang Wendong, Wang Fei, et al. Design for test torque transmission of self-lubricating radial spherical plain bearings for advanced nuclear power[J]. Bearing, 2019, (7): 50–56 doi: 10.19533/j.issn1000-3762.2019.07.012
|
[14] |
Yang Mingming, Yuan Junya, Guo Fang, et al. A biomimetic approach to improving tribological properties of hybrid PTFE/Nomex fabric/phenolic composites[J]. European Polymer Journal, 2016, 78: 163–172. doi: 10.1016/j.eurpolymj.2016.03.013.
|
[15] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. Sliding wear behaviors of Nomex fabric/phenolic composite under dry and water-bathed sliding conditions[J]. Friction, 2014, 2(3): 264–271. doi: 10.1007/s40544-014-0046-2.
|
[16] |
Revill P, Clarke A, Pullin R, et al. Acoustic emission monitoring of wear in aerospace self-lubricating bearing liner materials[J]. Wear, 2021, 486–487: 204102. doi: 10.1016/j.wear.2021.204102.
|
[17] |
Yang Mingming, Zhang Zhaozhu, Wu Liangfei, et al. Enhancing interfacial and tribological properties of self-lubricating liner composites via Layer-by-Layer self-assembly MgAl-LDH/PAMPA multilayers film on fibers surface[J]. Tribology International, 2019, 140: 105887. doi: 10.1016/j.triboint.2019.105887.
|
[18] |
Öztürk E, Yıldızlı K, Memmedov R, et al. Design of an experimental setup to determine the coefficient of static friction of the inner rings in contact with the outer rings of radial spherical plain bearings[J]. Tribology International, 2018, 128: 161–173. doi: 10.1016/j.triboint.2018.07.007.
|
[19] |
罗仕雨, 罗洪佳. SF自润滑轴承及其装配[J], 现代机械, 2011, (2), 68-70].
Luo Shiyu, Luo Hongjia. SF self-lubricating bearing and Mounting[J]. Modern Machinery, 2011, (2): 68-70
|
[20] |
王彻, 杨丽颖, 王守仁, 等. 新型关节轴承材料的研究现状及展望[J], 轴承, 2018, (10): 62-66].
Wang Che, Yang Liying, Wang Shouren, et al. Research status and prospect on new materials for spherical plain beraings[J]. Bearing, 2018, (10): 62-66
|
[21] |
Su Fenghua, Zhang Zhaozhu. Influence of surface modification on tribo-performance of hybrid glass/PTFE fabric composite with phenolic resin binder[J]. Applied Composite Materials, 2007, 14(3): 223–234. doi: 10.1007/s10443-007-9042-2.
|
[22] |
苏峰华, 张招柱, 王坤, 等. MoS2和PTFE改性炭纤维织物复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4): 338–342]. doi: 10.16078/j.tribology.2005.04.011.
Su Fenghua, Zhang Zhaozhu, Wang Kun, et al. Friction and wear properties of carbon fabric composites filled with PTFE and MoS2[J]. Tribology, 2005, 25(4): 338–342 doi: 10.16078/j.tribology.2005.04.011
|
[23] |
Li Peilong, Zhang Zhaozhu, Chen Zujun, et al. Synchronously improved ozone aging resistance and tribological performance of self-lubricating fabric composites via 2-mercaptobenzimidazole[J]. Polymer Composites, 2022, 43(7): 4519–4529. doi: 10.1002/pc.26709.
|
[24] |
马震, 雷耀, 樊恒中, 等. 织构化钛合金表面二硫化钨磷酸盐涂层的制备及其宽温域摩擦学性能[J]. 摩擦学学报, 2023, 43(5): 469–480]. doi: 10.16078/j.tribology.2022023.
Ma Zhen, Lei Yao, Fan Hengzhong, et al. Preparation of tungsten disulfide phosphate coating on textured titanium alloy surface and its tribological properties at elevated temperatures[J]. Tribology, 2023, 43(5): 469–480 doi: 10.16078/j.tribology.2022023
|
[25] |
Song Haojie, Zhang Zhaozhu, Men Xuehu. Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating[J]. European Polymer Journal, 2007, 43(10): 4092–4102. doi: 10.1016/j.eurpolymj.2007.07.003.
|
[26] |
White C S. Low friction fabric material: US2804886[P]. 1957-09-03.
|
[27] |
White C S. Bearing element comprising fibrous fluorocarbon: US3037893[P]. 1962-06-05.
|
[28] |
Darwin S R, Small L A. Method of bonding heat-hardenable backing materials to woven low friction materials: US3055788[P]. 1962-09-25.
|
[29] |
景绿路, 张艳, 孙忠志. 自润滑关节轴承标准分析[J]. 航空标准化与质量, 2010, (5): 35–39]. doi: 10.13237/j.cnki.asq.2010.05.001.
Jing Lvlu, Zhang Yan, Sun Zhongzhi. Standard analysis of self-lubricating spherical plain bearings[J]. Aeronautic Standardization & Quality, 2010, (5): 35–39 doi: 10.13237/j.cnki.asq.2010.05.001
|
[30] |
杨昆, 林晶. 国外航空自润滑关节轴承标准分析[J]. 航空标准化与质量, 2013, (5): 45–49]. doi: 10.13237/j.cnki.asq.2013.05.013.
Yang Kun, Lin Jing. Analysis of foreign aviation self-lubricating joint bearing standards[J]. Aeronautic Standardization & Quality, 2013, (5): 45–49 doi: 10.13237/j.cnki.asq.2013.05.013
|
[31] |
任忠海, 王庆华, 武中德, 等. 聚四氟乙烯纤维织物耐磨材料的摩擦学特性研究[J]. 摩擦学学报, 2002, 22(3): 193–196]. doi: 10.3321/j.issn:1004-0595.2002.03.008.
Ren Zhonghai, Wang Qinghua, Wu Zhongde, et al. Research on tribological properties of wear-resistant polytetrafluoroethylene fabric[J]. Tribology, 2002, 22(3): 193–196 doi: 10.3321/j.issn:1004-0595.2002.03.008
|
[32] |
Su Fenghua, Zhang Zhaozhu, Guo Fang, et al. Tribological properties of the composites made of pure and plasma treated-Nomex fabrics[J]. Wear, 2006, 261(3-4): 293–300. doi: 10.1016/j.wear.2005.10.010.
|
[33] |
向定汉, 潘青林, 姚正军. 聚四氟乙烯自润滑编织复合材料关节轴承的摆动摩擦磨损性能研究[J]. 摩擦学学报, 2003, 23(1): 72–75]. doi: 10.3321/j.issn:1004-0595.2003.01.017.
Xiang Dinghan, Pan Qinglin, Yao Zhengjun. Friction and wear behavior of polytetrafluoroethylene fabric composite spherical bearing in swaying[J]. Tribology, 2003, 23(1): 72–75 doi: 10.3321/j.issn:1004-0595.2003.01.017
|
[34] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite[J]. Composites Part A:Applied Science and Manufacturing, 2013, 49: 157–164. doi: 10.1016/j.compositesa.2013.03.001.
|
[35] |
Su Fenghua, Zhang Zhaozhu, Liu Weimin. Tribological and mechanical properties of Nomex fabric composites filled with polyfluo 150 wax and nano-SiO2[J]. Composites Science and Technology, 2007, 67(1): 102–110. doi: 10.1016/j.compscitech.2006.03.029.
|
[36] |
周先辉, 孙友松, 王万顺. CF/PTFE纤维混编织物增强环氧复合材料干摩擦特性[J]. 摩擦学学报, 2016, 36(5): 650–658]. doi: 10.16078/j.tribology.2016.05.017.
Zhou Xianhui, Sun Yousong, Wang Wanshun. Dry tribological property of carbon/polytetrafluoroethylene hybrid fabric reinforced epoxy composite[J]. Tribology, 2016, 36(5): 650–658 doi: 10.16078/j.tribology.2016.05.017
|
[37] |
刘旭军, 李同生, 杨生荣, 等. 芳纶纤维织物摩擦磨损性能的研究[J]. 摩擦学学报, 1999, 19(1): 23–27]. doi: 10.3321/j.issn:1004-0595.1999.01.005.
Liu Xujun, Li Tongsheng, Yang Shengrong, et al. Study of the tribological properties of kevlar fabric[J]. Tribology, 1999, 19(1): 23–27 doi: 10.3321/j.issn:1004-0595.1999.01.005
|
[38] |
Zhang Huijuan, Zhang Zhaozhu, Guo Fang. Effects of air plasma treatment on tribological properties of hybrid PTFE/Kevlar fabric composite[J]. Journal of Applied Polymer Science, 2009, 114(6): 3980–3986. doi: 10.1002/app.30994.
|
[39] |
Guo Fang, Zhang Zhaozhu, Xu Xianghui, et al. Tribological properties of PBO fabric composites modified by poly(vinyl alcohol)[J]. Journal of Applied Polymer Science, 2013, 130(2): 1313–1320. doi: 10.1002/app.39316.
|
[40] |
Ren Guina, Zhu Xiaotao, Men Xuehu, et al. The effect of oil fouling on the mechanical and tribological properties of nomex fabric/phenolic composite[J]. Journal of Composite Materials, 2016, 50(3): 427–432. doi: 10.1177/0021998315615251.
|
[41] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. Influence of lubricant filling on the dry sliding wear behaviors of hybrid PTFE/Nomex fabric composite[J]. Journal of Materials Science, 2014, 49(10): 3716–3724. doi: 10.1007/s10853-014-8081-y.
|
[42] |
Qiu Ming, Miao Yanwei, Li Yingchun, et al. Influence of ultrasonic modified liners on the adhesive and tribological performances of self-lubricating radial spherical plain bearings[J]. Tribology Transactions, 2016, 59(4): 655–662. doi: 10.1080/10402004.2015.1101514.
|
[43] |
Yang Mingming, Zhang Zhaozhu, Yuan Junya, et al. Growth of NiFe-layered double hydroxide nano-sheet arrays on hybrid textile for highly tribological performances of self-lubricating liner composites[J]. Tribology International, 2019, 133: 12–20. doi: 10.1016/j.triboint.2018.12.035.
|
[44] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors[J]. Tribology International, 2017, 107: 10–17. doi: 10.1016/j.triboint.2016.11.013.
|
[45] |
苏峰华, 张招柱, 姜葳, 等. 纳米TiO2改性玻璃纤维织物复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(2): 178–182]. doi: 10.3321/j.issn:1004-0595.2005.02.018.
Su Fenghua, ZhangZhaozhu, Jiang Wei, et al. Study on the friction and wear behavior of nano TiO2-filled glass cloth composites[J]. Tribology, 2005, 25(2): 178–182 doi: 10.3321/j.issn:1004-0595.2005.02.018
|
[46] |
李佩隆. 几种自润滑衬垫织物结构设计、改性与摩擦学性能研究[D]. 北京: 中国科学院大学, 2022].
Li Peilong. Design, modification and tribological properties of several self-lubricating liner composites[D]. Beijing: University of Chinese Academy of Science, 2022
|
[47] |
Gu Dapeng, Yang Yulin, Qi Xiaowen, et al. Influence of weave structures on the tribological properties of hybrid Kevlar/PTFE fabric composites[J]. Chinese Journal of Mechanical Engineering, 2012, 25(5): 1044–1051. doi: 10.3901/cjme.2012.05.1044.
|
[48] |
陈涛. 固体自润滑织物衬垫复合材料的设计及摩擦性能研究[D]. 上海: 上海工程技术大学, 2014].
Chen Tao. Study on design and friction properties of silid self-lubricating fabric liner composites[D]. Shanghai: Shanghai University of Engineering Science, 2014
|
[49] |
Rattan R, Bijwe J, Fahim M. Influence of weave of carbon fabric on low amplitude oscillating wear performance of Polyetherimide composites[J]. Wear, 2007, 262(5-6): 727–735. doi: 10.1016/j.wear.2006.08.005.
|
[50] |
Bijwe J, Rattan R. Influence of weave of carbon fabric in polyetherimide composites in various wear situations[J]. Wear, 2007, 263(7-12): 984–991. doi: 10.1016/j.wear.2006.12.030.
|
[51] |
Yang Yu lin, Gu Da peng, Deng Wei. Effects of weaves on the tribological properties of hybrid kevlar/PTFE fabric composites[J]. Advanced Materials Research, 2010, 139–141: 125–128. doi: 10.4028/www.scientific.net/amr.139-141.125.
|
[52] |
Li Peilong, Zhang Zhaozhu, Yang Mingming, et al. Influence of fabric geometry on yarn pull-out property and wear performance of hybrid S-glass/PTFE fabric-reinforced composites[J]. Polymers for Advanced Technologies, 2021, 32(1): 315–325. doi: 10.1002/pat.5087.
|
[53] |
Qi Xiaowen, Ma Jian, Jia Zhining, et al. Effects of weft density on the friction and wear properties of self-lubricating fabric liners for journal bearings under heavy load conditions[J]. Wear, 2014, 318(1-2): 124–129. doi: 10.1016/j.wear.2014.06.027.
|
[54] |
Ma Jian, Fan Bingli, Gao Yujin, et al. Effects of Kevlar® 29 yarn twist on tensile and tribological properties of self-lubricating fabric liner[J]. Journal of Industrial Textiles, 2017, 46(8): 1698–1714. doi: 10.1177/1528083716631327.
|
[55] |
Guo Fang, Zhang Zhaozhu, Liu Weimin, et al. Influence of solid lubricant reinforcement on wear behavior of Kevlar fabric composites[J]. Journal of Applied Polymer Science, 2008, 110(3): 1771–1777. doi: 10.1002/app.28124.
|
[56] |
Zhang Huijuan, Zhang Zhaozhu, Guo Fang. Tribological behaviors of hybrid PTFE/nomex fabric/phenolic composite reinforced with multiwalled carbon nanotubes[J]. Journal of Applied Polymer Science, 2012, 124(1): 235–241. doi: 10.1002/app.33594.
|
[57] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. TiB2 reinforced hybrid-fabric composites with enhanced thermal and mechanical properties for high-temperature tribological applications[J]. Tribology International, 2017, 115: 8–17. doi: 10.1016/j.triboint.2017.05.006.
|
[58] |
Tonis E, Frousiou E, Heliopoulos N S, et al. Kevlar® and Nomex® modification via 2, 4-dihydroxybenzophenone anchoring improves water repellency and induces antibacterial and UV protection properties[J]. Materials Today Chemistry, 2023, 33: 101695. doi: 10.1016/j.mtchem.2023.101695.
|
[59] |
Jia Caixia, Chen Ping, Li Bin, et al. Effects of Twaron fiber surface treatment by air dielectric barrier discharge plasma on the interfacial adhesion in fiber reinforced composites[J]. Surface and Coatings Technology, 2010, 204(21-22): 3668–3675. doi: 10.1016/j.surfcoat.2010.04.049.
|
[60] |
Guan Yu, Li Wang, Zhang Yuliang, et al. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions[J]. Composites Science and Technology, 2017, 144: 193–201. doi: 10.1016/j.compscitech.2017.03.010.
|
[61] |
胡月, 谭德强, 徐晨, 等. 雨水环境下PTFE/Kevlar编织材料摩擦学性能研究[J]. 摩擦学学报, 2023, 43(8): 879–889]. doi: 10.16078/j.tribology.2022127.
Hu Yue, Tan Deqiang, Xu Chen, et al. Tribological properties of PTFE/Kevlar fabric composite in rainwater environment[J]. Tribology, 2023, 43(8): 879–889 doi: 10.16078/j.tribology.2022127
|
[62] |
Sun Yousong, Zhang Qiang, Gao Lei, et al. Experimental study on tribological properties of carbon/polytetrafluoroethylene hybrid fabric reinforced composite under heavy loads and oil lubrication[J]. Tribology International, 2016, 94: 82–86. doi: 10.1016/j.triboint.2015.08.019.
|
[63] |
He Yaohui, Zhang Zhaozhu, Wang Yanling, et al. Combined effect of interfacial modification and α-ZrP reinforcement on the tribological propertiesof PPS fabric/phenolic composites[J]. Colloids and surfaces A, 2022, 648: 129118. doi: 10.1016/j.colsurfa.2022.129118.
|
[64] |
陶立明, 徐明坤, 李宋, 等. 一种固-液复合润滑混纺纤维织物及其制备方法和应用: CN115198532B[P]. 2023-05-26].
Tao Liming, Xu Mingkun, Li Song, et al. Solid-liquid composite lubrication blend fiber fabric as well as preparation method and application thereof: CN115198532B[P]. 2023-05-26
|
[65] |
储凡杰, 张招柱, 袁军亚, 等. 一种超高分子量聚乙烯纤维基自润滑织物衬垫材料及其制备方法: CN112252020B[P]. 2022-02-01].
Chu Fanjie, Zhang zhaozhu, Yuanjunya, et al. Ultra-high molecular weight polyethylene fiber-based self-lubricating fabric liner material and preparation method thereof: CN112252020B[P]. 2022-02-01
|
[66] |
储凡杰, 张招柱, 姜葳, 等. 一种自润滑衬垫复合材料及其制备方法和应用: CN113715452B[P]. 2022-08-02].
Chu Fanjie, Zhang zhaozhu, Jiang wei, et al. Self-lubricating liner composite material as well as preparation method and application thereof: CN113715452B[P]. 2022-08-02
|
[67] |
Su Fenghua, Zhang Zhaozhu, Wang Kun, et al. Tribological and mechanical properties of the composites made of carbon fabrics modified with various methods[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(12): 1601–1607. doi: 10.1016/j.compositesa.2005.04.012.
|
[68] |
Guo Fang, Zhang Zhaozhu, Zhang Huijuan, et al. Effect of air plasma treatment on mechanical and tribological properties of PBO fabric composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1305–1310. doi: 10.1016/j.compositesa.2009.06.001.
|
[69] |
Yang Mingming, Zhang Zhaozhu, Yuan Junya, et al. Enhanced mechanical and tribological properties of Kevlar/PTFE-phenolic composites by improving interfacial properties by aramid nanofibers[J]. Polymer Composites, 2020, 41(10): 4192–4201. doi: 10.1002/pc.25704.
|
[70] |
Liao Chaoying, Zhang Zhaozhu, Yang Mingming, et al. The cooperatively crosslinking between GO-COOH/TiO2 @PAO microcapsules and polyimide to improve the mechanical and tribological properties of PEEK/PI composites[J]. Tribology International, 2024, 191: 109209. doi: 10.1016/j.triboint.2023.109209.
|
[71] |
Li Peilong, Zhang Zhaozhu, Yang Mingming, et al. Synchronously improved thermal conductivity and tribological performance of self-lubricating fabric liner composites via integrated design method with copper yarn[J]. Tribology International, 2021, 164: 107204. doi: 10.1016/j.triboint.2021.107204.
|
[72] |
Wang Yanling, Zhang Zhaozhu, Yang Mingming, et al. Ag nanoparticles homogeneously anchored on Kaolin synergistically improve the tribological performance of PBO/phenolic resin liner composites[J]. Tribology International, 2022, 168: 107424. doi: 10.1016/j.triboint.2021.107424.
|
[73] |
Liu Meng, Zhang Zhaozhu, Wang Yanling, et al. Enhanced mechanical and tribological performances of fabric liners with the intercalation of multi-level interphase[J]. Tribology International, 2023, 188: 108906. doi: 10.1016/j.triboint.2023.108906.
|
[74] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Enhanced high-temperature tribological performance of PTFE/PI fabric composites by simultaneously introducing PDA/SiO2 hybrid coating and aramid product reinforcements[J]. Polymer Composites, 2021, 42(7): 3539–3549. doi: 10.1002/pc.26077.
|
[75] |
Wang Yanling, Zhang Zhaozhu, Liu Meng, et al. Halloysite-gold core-shell nanosystem synergistically enhances thermal conductivity and mechanical properties to optimize the wear-resistance of a pheonlic-PBO/PTFE textile composite liner[J]. Friction, 2023, 11(12): 2238–2252. doi: 10.1007/s40544-022-0720-8.
|
[76] |
Liu Meng, Zhang Zhaozhu, Yang Mingming, et al. Novel design of MXene@UiO-66-NH2 hybrid nanofluids towards promoting the mechanical and tribological performance of fabric composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107122. doi: 10.1016/j.compositesa.2022.107122.
|
[77] |
杨明明, 陈祖均, 张招柱, 等. 一种芳纶III纤维增强自润滑衬垫复合材料及其制备方法: CN113089327B[P]. 2021-12-31].
Yang Mingming, Chen Zujun, Zhang zhaozhu, et al. Aramid III fiber reinforced self-lubricating gasket composite material and preparation method thereof: CN113089327B[P]. 2021-12-31
|
[78] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. Tribological behaviors of hybrid PTFE/nomex fabric/phenolic composite under dry and water-bathed sliding conditions[J]. Tribology Transactions, 2014, 57(6): 1116–1121. doi: 10.1080/10402004.2014.937887.
|
[79] |
Zhang Huijuan, Zhang Zhaozhu, Guo Fang, et al. Surface modification of CuS nanoparticles and their effect on the tribological properties of hybrid PTFE/kevlar fabric/phenolic composite[J]. Journal of Composite Materials, 2010, 44(21): 2461–2472. doi: 10.1177/0021998310369588.
|
[80] |
丛培红, 吴行阳, 刘旭军, 等. 摩擦材料用有机粘接剂的研究与进展[J]. 高分子材料科学与工程, 2012, 28(1): 180–183,187]. doi: 10.16865/j.cnki.1000-7555.2012.01.047.
Cong Peihong, Wu Xingyang, Liu Xujun, et al. Study and development of organic binders applied in friction materials[J]. Polymer Materials Science & Engineering, 2012, 28(1): 180–183,187 doi: 10.16865/j.cnki.1000-7555.2012.01.047
|
[81] |
Liu Ying, Gao Gengyuan, Jiang Dan, et al. Enhancement of underwater tribological properties of hybrid PTFE/nomex fabric/epoxy resin multilayer composites by mixed graphite and MoS2 fillers[J]. ACS Omega, 2022, 7(31): 27609–27616. doi: 10.1021/acsomega.2c03231.
|
[82] |
Cui Wenyan, Xu Mingkun, Tao Liming, et al. In-situ observation of transfer film formation and evolution for the fabric composite lubricated spherical plain bearing at cryogenic and wide temperature range[J]. Applied Surface Science, 2023, 612: 155946. doi: 10.1016/j.apsusc.2022.155946.
|
[83] |
Huang Ting, Lu Renguo, Ma Yuning, et al. Study on the friction and sliding wear behavior of hybrid polytetrafluoroethylene/kevlar fabric composites filled with polyphenylene sulfide[J]. Journal of Macromolecular Science, Part B, 2012, 51(1): 109–124. doi: 10.1080/00222348.2011.583195.
|
[84] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Coupling hybrid of BN nanosheets and carbon nanotubes to enhance the mechanical and tribological properties of fabric composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 132–140. doi: 10.1016/j.compositesa.2019.05.010.
|
[85] |
苏峰华, 张招柱, 姜葳, 等. 纳米及微米颗粒改性玻璃纤维织物复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2004, 24(5): 406–410]. doi: 10.3321/j.issn:1004-0595.2004.05.005.
Su Fenghua, Zhang Zhaozhu, Jiang Wei, et al. Study on the friction and wear properties of glass cloth composites filled with various nano- and micro-particles[J]. Tribology, 2004, 24(5): 406–410 doi: 10.3321/j.issn:1004-0595.2004.05.005
|
[86] |
苏峰华, 张招柱, 姜葳, 等. 水解/接枝处理诺梅克斯纤维织物复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(6): 551–555]. doi: 10.3321/j.issn:1004-0595.2006.06.010.
Su Fenghua, Zhang Zhaozhu, Jiang Wei, et al. Study on tribological properties of nomex fabric composite treated with hydrolyzation/grafting[J]. Tribology, 2006, 26(6): 551–555 doi: 10.3321/j.issn:1004-0595.2006.06.010
|
[87] |
Guo Fang, Zhang Zhaozhu, Zhang Huijuan, et al. Tribological behavior of Kevlar fabric composites filled with nanoparticles[J]. Journal of Applied Polymer Science, 2009, 111(5): 2419–2425. doi: 10.1002/app.29239.
|
[88] |
Guo Fang, Zhang Zhaozhu, Zhang Huijuan, et al. Tribological behavior of spun Kevlar fabric composites filled with fluorinated compounds[J]. Tribology International, 2010, 43(8): 1466–1471. doi: 10.1016/j.triboint.2010.02.004.
|
[89] |
姚卫刚, 周慧慧. 高岭土填充改性自润滑衬垫材料的制备及分析表征[J]. 上海化工, 2022, 47(5): 5–9]. doi: 10.16759/j.cnki.issn.1004-017x.2022.05.051.
Yao Weigang, Zhou Huihui. Preparation and characterization of Kaolin Powder modified self-lubricating liner[J]. Shanghai Chemical Industry, 2022, 47(5): 5–9 doi: 10.16759/j.cnki.issn.1004-017x.2022.05.051
|
[90] |
祁渊. 纳米粒子增强PEEK/PTFE复合材料摩擦转移膜特性研究[D]. 兰州: 兰州理工大学, 2020].
Qi Yuan. The research on characteristics of tribological transfer films of PEEK/PTFE composites reinforced with nanoparticles[D]. Lanzhou: Lanzhou University of Technology, 2020
|
[91] |
张艳, 郭芳, 张招柱. 自润滑纤维织物复合材料摩擦学性能研究[J]. 表面技术, 2017, 46(8): 140–144]. doi: 10.16490/j.cnki.issn.1001-3660.2017.08.023.
Zhang Yan, Guo Fang, Zhang Zhaozhu. Tribological properties of self-lubricating fabric composites[J]. Surface Technology, 2017, 46(8): 140–144 doi: 10.16490/j.cnki.issn.1001-3660.2017.08.023
|
[92] |
Ren Guina, Zhang Zhaozhu, Song Yuanming, et al. Effect of MWCNTs-GO hybrids on tribological performance of hybrid PTFE/Nomex fabric/phenolic composite[J]. Composites Science and Technology, 2017, 146: 155–160. doi: 10.1016/j.compscitech.2017.04.022.
|
[93] |
Xu Mingkun, Wang Xiaoyue, Wang Tingmei, et al. Ag nanoparticle decorated graphene for improving tribological properties of fabric/phenolic composites[J]. Tribology International, 2022, 176: 107889. doi: 10.1016/j.triboint.2022.107889.
|
[94] |
赵鑫, 张招柱, 姜葳, 等. 玄武岩鳞片和氟化石墨增强织物复合材料在高速摩擦磨损工况中的应用[J]. 摩擦学学报, 2022, 42(1): 163–175]. doi: 10.16078/j.tribology.2020097.
Zhao Xin, Zhang Zhaozhu, Jiang Wei, et al. Application of basalt scale(BS) filler and fluorides graphite(FG) reinforced textile composites in friction and wear at high sliding speeds[J]. Tribology, 2022, 42(1): 163–175 doi: 10.16078/j.tribology.2020097
|
[95] |
Sun Wenbo, Gu Yizhuo, Yang Zhongjia, et al. Enhanced tribological performance of hybrid polytetrafluoroethylene/Kevlar fabric composite filled with milled pitch-based carbon fibers[J]. Journal of Applied Polymer Science, 2018, 135(19): 46269. doi: 10.1002/app.46269.
|
[96] |
Zhang Huijuan, Zhang Zhaozhu, Guo Fang, et al. Enhanced wear properties of hybrid PTFE/cotton fabric composites filled with functionalized multi-walled carbon nanotubes[J]. Materials Chemistry and Physics, 2009, 116(1): 183–190. doi: 10.1016/j.matchemphys.2009.03.008.
|
[97] |
Li Peilong, Zhang Zhaozhu, Yang Mingming, et al. MoS2-decorated talc hybrid for improving the tribological property of Nomex/PTFE fabric composites[J]. Polymer Composites, 2021, 42(11): 5839–5849. doi: 10.1002/pc.26264.
|
[98] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Combined effects of interface modification and micro-filler reinforcements on the thermal and tribological performances of fabric composites[J]. Friction, 2021, 9(5): 1110–1126. doi: 10.1007/s40544-020-0405-0.
|
[99] |
Yang Mingming, Zhang Zhaozhu, Yuan Junya, et al. Synergistic effects of AlB2 and fluorinated graphite on the mechanical and tribological properties of hybrid fabric composites[J]. Composites Science and Technology, 2017, 143: 75–81. doi: 10.1016/j.compscitech.2017.03.005.
|
[100] |
Yang Mingming, Yuan Junya, Men Xuehu, et al. Effect of ZrB2 particles incorporation on high-temperature tribological properties of hybrid PTFE/Nomex fabric/phenolic composite[J]. Tribology International, 2016, 99: 289–295. doi: 10.1016/j.triboint.2016.03.033.
|
[101] |
Qiu Ming, Miao Yanwei, Li Yingchun, et al. Effects of woven liners treated by LaCl3 or CeO2 solution on film formation mechanisms of self-lubricating radial spherical plain bearings[J]. Industrial Lubrication and Tribology, 2016, 68(3): 308–314. doi: 10.1108/ilt-04-2015-0048.
|
[102] |
Zhang Huijuan, Zhang Zhaozhu, Guo Fang. A study on the sliding wear of hybrid PTFE/kevlar fabric/phenolic composites filled with nanoparticles of TiO2 and SiO2[J]. Tribology Transactions, 2010, 53(5): 678–683. doi: 10.1080/10402001003672228.
|
[103] |
Yan Xiaocui, Qi Xiaowen, Xiang Xuanbao, et al. Effect of temperature variation on wear mechanical of liners modified by PAO40/SiO2 microcapsules[J]. Tribology International, 2023, 187: 108777. doi: 10.1016/j.triboint.2023.108777.
|
[104] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. POSS grafted hybrid-fabric composites with a biomimic middle layer for simultaneously improved UV resistance and tribological properties[J]. Composites Science and Technology, 2018, 160: 69–78. doi: 10.1016/j.compscitech.2018.03.022.
|
[105] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Combined effects of interface modification and nano-reinforcement via nano-enhanced interphase in hybrid-fabric composites for tribological applications[J]. 2019, 40(9), 3383-3392. doi: 10.1002/pc.25199
|
[106] |
Su Fenghua, Zhang Zhaozhu, Wang Kun, et al. Friction and wear of Synfluo 180XF wax and nano-Al2O3 filled Nomex fabric composites[J]. Materials Science and Engineering: A, 2006, 430(1-2): 307–313. doi: 10.1016/j.msea.2006.05.060.
|
[107] |
He Yaohui, Zhang Zhaozhu, Wang Yanling, et al. Inspired with fish scale to manufacture biomimetic MXene derivative for the reinforcement on tribological and mechanical properties of PPS fabric/phenolic composites[J]. Tribology International, 2023, 179: 108136. doi: 10.1016/j.triboint.2022.108136.
|
[108] |
Liu Meng, Zhang Zhaozhu, Wang Yanling, et al. Synergy of B4C@MoS2 hybrid for significantly improved mechanical and tribological properties of PI/PTFE fabric composites[J]. Polymer Composites, 2021, 42(12): 6467–6477. doi: 10.1002/pc.26313.
|
[109] |
Yang Mingming, Zhang Zhaozhu, Yuan Junya, et al. Growth of Mo2C nanoparticles on graphene as lubricant filler for high tribological performances of fabric self-lubricating liner composites[J]. RSC Advances, 2016, 6(111): 110070–110076. doi: 10.1039/C6RA17061G.
|
[110] |
Wei Rubin, Zhai Wen, Li Feng, et al. Enhancing stab resistance of thermoset–aramid composite fabrics by coating with SiC particles[J]. Journal of Industrial Textiles, 2019, 48(7): 1228–1241. doi: 10.1177/1528083718760804.
|
[111] |
Chelliah A. Mechanical properties and abrasive wear of different weight percentage of TiC filled basalt fabric reinforced epoxy composites[J]. Materials Research-Ibero-American Journal of Materials, 2019, 22(2): e20180431. doi: 10.1590/1980-5373-mr-2018-0431.
|
[112] |
Wang Yanling, Zhang Zhaozhu, Yang Mingming, et al. Modified montmorillonite synergizes with Co-MOF@PBO fabric to improve the wear resistance of PBO/phenolic resin composites[J]. Journal of Colloid and Interface Science, 2022, 611: 480–490. doi: 10.1016/j.jcis.2021.12.101.
|
[113] |
Wang Yanling, Zhang Zhaozhu, Jiang Wwei, et al. Mono-dispersed AuNPs decorated enlarged halloysite nanotubes to encapsulate [HMIm][NTf2] microcapsules for improving the wear rasistance of composites[J]. Composite Part A: Applied Science and Manufacturing, 2023, 175: 107752.
|
[114] |
Wang Yanling, Zhang Zhaozhu, Liu Meng, et al. Effects of rod-like attapulgite and lamellar kaolin reinforcement on the tribological behavior of PBO textile-resin composite liner[J]. Tribology International, 2022, 174: 107689. doi: 10.1016/j.triboint.2022.107689.
|
[115] |
Liu Meng, Zhang Zhaozhu, Wang Yanling, et al. Constructing the hierarchical TiN@ZIF-8 hybrid for improving the mechanical and tribological performance of fabric composites[J]. Composites Communications, 2022, 31: 101114. doi: 10.1016/j.coco.2022.101114.
|
[116] |
袁军亚, 杨明明, 李佩隆, 等. 自润滑关节轴承用织物衬垫摩擦学研究进展[J]. 摩擦学学报, 2021, 41(2): 280–292]. doi: 10.16078/j.tribology.2020102.
Yuan Junya, Yang Mingming, Li Peilong, et al. Progress research on the tribology of fabric liner for self-lubricating joint bearings[J]. Tribology, 2021, 41(2): 280–292 doi: 10.16078/j.tribology.2020102
|
[117] |
Wu Liangfei, Zhang Zhaozhu, Yang Mingming, et al. Facile synthesis of CuO/g-C3N4 hybrids for enhancing the wear resistance of polyimide composite[J]. European Polymer Journal, 2019, 116: 463–470. doi: 10.1016/j.eurpolymj.2019.04.041.
|
[118] |
Wu Liangfei, Zhang Zhaozhu, Yang Mingming, et al. Mulberry-like carbon spheres decorated with UiO-66-NH2 for enhancing the mechanical and tribological performances of UHMWPE composites[J]. Tribology International, 2020, 141: 105916. doi: 10.1016/j.triboint.2019.105916.
|
[119] |
Yang Yulin, Ma Jian, Qi Xiaowen, et al. Fabrication of nano serpentine-potassium acetate intercalation compound and its effect as additive on tribological properties of the fabric self-lubricating liner[J]. Wear, 2014, 318(1-2): 202–211. doi: 10.1016/j.wear.2014.07.003.
|
[120] |
Yan Xiaocui, Yang Xiao, Qi Xiaowen, et al. Tribological properties of PAO40@SiO2/PTFE/aramid fabric composites subjected to heavy-loading conditions[J]. 2022, 166, 107336. doi: 10.1016/j.triboint.2021.107336.
|
[121] |
Xiong Weitang, Shu Xi, Cheng Shiyun, et al. Tribological performances of polytetrafluoroethylene/Kevlar fabric liner reinforced by oil-containing microcapsules[J]. Tribology International, 2024, 191: 109119. doi: 10.1016/j.triboint.2023.109119.
|
[122] |
He Yaohui, Zhang Zhaozhu, Wang Yanling, et al. Synergistic effects of bioprotein decoration and WS2@Ti3C2 nanohybrids on the interfacial and tribological performance of PPS/PTFE fabric composites[J]. Tribology International, 2023, 186: 108587. doi: 10.1016/j.triboint.2023.108587.
|
[123] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. WS2-filled hybrid PTFE/Nomex fabric composites with improved antiwear property[J]. Journal of Materials Science, 2015, 50(3): 1065–1070. doi: 10.1007/s10853-014-8663-8.
|
[124] |
Yang Mingming, Zhu Xiaotao, Ren Guina, et al. Influence of air-plasma treatment and hexagonal boron nitride as filler on the high temperature tribological behaviors of hybrid PTFE/Nomex fabric/phenolic composite[J]. European Polymer Journal, 2015, 67: 143–151. doi: 10.1016/j.eurpolymj.2015.03.027.
|
[125] |
Liu Meng, Zhang Zhaozhu, Wang Yanling, et al. Designing core–shell Cu@Co porous liquid to optimize the mechanical and lubrication performances of fabric liner[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107707. doi: 10.1016/j.compositesa.2023.107707.
|
[126] |
Wang Yanling, Zhang Zhaozhu, Chu Fanjie, et al. Designing polydopamine-capped [BMIm]PF6@halloysite/NaL microcapsule optimize the wear-resistance of polymer composite liner[J]. Tribology International, 2023, 179: 108104. doi: 10.1016/j.triboint.2022.108104.
|
[127] |
Li Hulin, Zeng Fanpei, Yin Zhongwei, et al. A study on the tribological behavior of hybrid PTFE/Kevlar fabric composites filled with nano-SiC and/or submicron-WS2 fillers[J]. Polymer Composites, 2016, 37(7): 2218–2226. doi: 10.1002/pc.23400.
|
[128] |
Zhang Bo, Jia Lihua, Tian Ming, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: a review[J]. European Polymer Journal, 2021, 147: 110352. doi: 10.1016/j.eurpolymj.2021.110352.
|
[129] |
邓双辉. 接枝聚合物链在纤维/树脂界面的组装行为及界面性能研究[D]. 上海: 华东理工大学, 2013].
Deng Shuanghui. Exploring assembly behavior and interfacial properties of grafted polymer chains at the interface between fibers and polymer matrix[D]. Shanghai: East China University of Science and Technology, 2013
|
[130] |
门学虎, 姜葳, 张招柱, 等. HNO3/H2SO4氧化改性炭纤维织物复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(5): 443–447].
Men Xuehu, Jiang Wei, Zhang Zhaozhu, et al. Friction and wear properties of carbon fabric composites treated by oxidation in acid mixtures of HNO3/H2SO4[J]. Tribology, 2006, 26(5): 443–447
|
[131] |
Zhang Tong, Fu Xiaobo, Leng Huaisen, et al. Improve the interfacial properties between poly(arylenesulfidesulfone) and carbon fiber by double polymeric grafted layers designed on a carbon fiber surface[J]. Langmuir, 2022, 38: 10975–10985. doi: 10.1021/acs.langmuir.2c01381.
|
[132] |
李莹. 碳纤维表面金属有机框架的构筑及其界面自修复行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2022].
Li Ying. Construction of metal-organic framework on carbon fiber surface and study of interfacial self-healing behaviors[D]. Harbin: Harbin Institute of Technology, 2022
|
[133] |
杨明明. 几种自润滑轴承用聚合物背衬复合材料摩擦学性能研究[D]. 北京: 中国科学院大学, 2017].
Yang Mingming. Tribological properties of several polymer matrix self-lubricating liner composites[D]. Beijing: University of Chinese Academy of Sciences, 2022
|
[134] |
Liu Meng, Zhang Zhaozhu, Wang Yanling, et al. Synergistic effects of Ti3C2Tx @SiCnws nanofluids and bio-inspired interfacial modification for optimizing tribological behaviors of fabric liners[J]. Tribology International, 2022, 176: 107879. doi: 10.1016/j.triboint.2022.107879.
|
[135] |
Ren Guina, Zhang Zhaozhu, Zhu Xiaotao, et al. Combined effect of air-plasma treatment and lubricant filling on the dry sliding wear behavior of hybrid PTFE/Nomex fabric/phenolic composite[J]. Composites Science and Technology, 2014, 100: 204–211. doi: 10.1016/j.compscitech.2014.06.015.
|
[136] |
Yang Mingming, Zhang Zhaozhu, Yuan Junya, et al. Fabrication of PTFE/Nomex fabric/phenolic composites using a layer-by-layer self-assembly method for tribology field application[J]. Friction, 2020, 8(2): 335–342. doi: 10.1007/s40544-019-0260-z.
|
[137] |
梁霞, 邱明, 李迎春, 等. 改性处理衬垫对自润滑关节轴承粘接性能及摩擦学性能的影响[J]. 现代制造工程, 2017, (3): 7–11]. doi: 10.16731/j.cnki.1671-3133.2017.03.002.
Liang Xia, Qiu Ming, Li Yingchun, et al. Effects of liner modification on the bonding behavior and tribological properties of self-lubricating spherical plain bearings[J]. Modern Manufacturing Engineering, 2017, (3): 7–11 doi: 10.16731/j.cnki.1671-3133.2017.03.002
|
[138] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Adopting bio-inspired interfacial modification and reinforcements simultaneously for optimizing the tribological performance of fabric composites[J]. Tribology International, 2022, 169: 107495. doi: 10.1016/j.triboint.2022.107495.
|
[139] |
Su F, Zhang Z, Guo F, et al. Friction and wear properties of fabric/phenolic composites with plasma treated-hybrid glass/PTFE fabric[J]. Composites Science and Technology, 2007, 67(6): 981–988. doi: 10.1016/j.compscitech.2006.06.010.
|
[140] |
Zhang Zhaozhu, Zhang Huijuan, Guo Fang, et al. Enhanced wear resistance of hybrid PTFE/Kevlar fabric/phenolic composite by cryogenic treatment[J]. Journal of Materials Science, 2009, 44(22): 6199–6205. doi: 10.1007/s10853-009-3862-4.
|
[141] |
Yuan Junya, Zhang Zhaozhu, Yang Mingming, et al. Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications[J]. Composites Part A:Applied Science and Manufacturing, 2017, 102: 243–252. doi: 10.1016/j.compositesa.2017.08.006.
|
[142] |
Zhao Song, Zhang Haoran, Qi Xiaowen, et al. Wear mechanism of TC4 titanium alloy with TiN coating against self-lubricating fabric[J]. Coatings, 2023, 13(7): 1209. doi: 10.3390/coatings13071209.
|
[143] |
Srivyas P D, Wani M F, Sehgal R, et al. Synergetic effect of surface texturing and graphene nanoplatelets on the tribological properties of hybrid self-lubricating composite[J]. Tribology International, 2022, 168: 107434. doi: 10.1016/j.triboint.2022.107434.
|
[144] |
Zhang Huijuan, Zhang Zhaozhu, Guo Fang, et al. Friction and wear of hybrid PTFE/kevlar fabric composite filled with ZnO nanoparticles sliding against steel, copper, and aluminum[J]. Tribology Transactions, 2009, 52(6): 833–840. doi: 10.1080/10402000903125378.
|
[145] |
Wang Hai, Sun Annan, Qi Xiaowen, et al. Wear properties of textured lubricant films filled with graphite and polytetrafluoroethylene (PTFE) via laser surface texturing (LST)[J]. Tribology International, 2022, 167: 107414. doi: 10.1016/j.triboint.2021.107414.
|
[146] |
Yuan Zewei, Qin Yue, Cheng Kai, et al. Investigation on surface morphology and tribological property generated by vibration assisted strengthening on aviation spherical plain bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(12): 4091–4101. doi: 10.1177/0954406218787850.
|
[147] |
Chen Chuanhai, Li Bowen, Guo Jinyan, et al. Bearing life prediction method based on the improved FIDES reliability model[J]. Reliability Engineering & System Safety, 2022, 227: 108746. doi: 10.1016/j.ress.2022.108746.
|
[148] |
Chen Jiaxian, Huang Ruyi, Chen Zhuyun, et al. Transfer learning algorithms for bearing remaining useful life prediction: a comprehensive review from an industrial application perspective[J]. Mechanical Systems and Signal Processing, 2023, 193: 110239. doi: 10.1016/j.ymssp.2023.110239.
|
[149] |
徐娟, 蒋瑞, 陈为伟, 等. 基于对抗域自适应的轴承剩余使用寿命预测方法[J]. 轴承, 2023, (2): 113–120]. doi: 10.19533/j.issn1000-3762.2023.02.016.
Xu Juan, Jiang Rui, Chen Weiwei, et al. Prediction method for remaining useful life of bearings based on adversarial domain adaptation[J]. Bearing, 2023, (2): 113–120 doi: 10.19533/j.issn1000-3762.2023.02.016
|
[150] |
Han T, Pang JC, Tan A C C. Remaining useful life prediction of bearing based on stacked autoencoder and recurrent neural network[J]. Journal of Manufacturing Systems, 2021, 61: 576–591. doi: 10.1016/j.jmsy.2021.10.011.
|
[151] |
Ding Ning, Li Hulin, Yin Zhongwei, et al. A novel method for journal bearing degradation evaluation and remaining useful life prediction under different working conditions[J]. Measurement, 2021, 177: 109273. doi: 10.1016/j.measurement.2021.109273.
|
[152] |
卢金忠, 戴新奇, 汤杰, 等. 关节轴承动载荷与寿命试验规程[S]. JB/T 108860-2008, 2008-09-01].
Lu Jinzhong, Dai Xinqi, Tang Jie, et al. Spherical plain bearings-test code for dynamic load and life[S]. JB/T 108860-2008, 2008-09-01
|
[153] |
杨咸启, 卢金忠, 姜韶峰, 等. 关节轴承额定动载荷与寿命[S]. JB/T 8565-2010, 2010-07-01].
Yang Xianqi, Lu Jinzhong, Jiang Shaofeng, et al. Spherical plain bearings-dynamic load ratings life[S]. JB/T 8565-2010, 2010-07-01
|
[154] |
杨咸启, 李雪飞, 陈志雄. ISO/TC4关节轴承额定载荷标准的发展[J], 轴承, 2021, (3): 1-5].
Yang Xianqi, Li Xuefei, Chen Zhixiong. Development of ISO/TC4 standard for load rating of spherical plain beraings[J]. Bearing, 2021, (3): 1-5
|
[155] |
陈有光, 李如琰, 张文安, 等. 低速摆动自润滑向心关节轴承规范[S]. GJB 5502-2005, 2006-05-01].
Chen Youguang, Li Ruyan, Zhang Wenan, et al. Specification for low-speed oscillating and self-lubricating radial spherical plain bearings[S]. GJB 5502-2005, 2006-05-01
|
[156] |
林晶, 张令, 袁春明, 等. 航空高速轻载自润滑关节轴承通用规范[S]. GJB 8529-2015, 2015-12-01].
Lin Jing, Zhang Ling, Yuan Chunming, et al. General specification for high speed oscillation light load self-lubricating self-aligning plain bearings[S]. GJB 8529-2015, 2015-12-01
|
[157] |
刘云帆, 林亮行, 马国政, 等. 基于CNN和LSTM的航天用涂层型自润滑关节轴承寿命预测及可靠性评估[J]. 航天器环境工程, 2023, 40(5): 531–540]. doi: 10.12126/see.2023012.
Liu Yunfan, Lin Liangxing, Ma Guozheng, et al. Life prediction and reliability evaluation of coated self-lubricating spherical bearings for space applications based on CNN and LSTM[J]. Spacecraft Environment Engineering, 2023, 40(5): 531–540 doi: 10.12126/see.2023012
|
[158] |
Ding Ning, Li Hulin, Yin Zhongwei, et al. Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network[J]. Measurement, 2020, 166: 108215. doi: 10.1016/j.measurement.2020.108215.
|
[159] |
Ben Ali J, Chebel-Morello B, Saidi L, et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[J]. Mechanical Systems and Signal Processing, 2015, 56-57: 150–172. doi: 10.1016/j.ymssp.2014.10.014.
|
[160] |
马占伟, 袁逸萍, 樊盼盼, 等. 基于多尺度卷积神经网络的轴承剩余寿命预测[J]. 机械设计与制造, 2023, (1): 5–8]. doi: 10.19356/j.cnki.1001-3997.2023.01.004.
Ma Zhanwei, Yuan Yiping, Fan Panpan, et al. Prediction of bearing residual useful life based on multi-scale convolutional neural network[J]. Machinery Design & Manufacture, 2023, (1): 5–8 doi: 10.19356/j.cnki.1001-3997.2023.01.004
|
[161] |
胡占齐, 李巍, 杨育林, 等. 航空关节轴承寿命试验机发展综述[J], 轴承, 2015, (11): 57-63].
Hu Zhanqi, Li Wei, Yang Yuling, et al. Review on development of life testers for aircraft spherical plain bearings[J]. Bearing, 2015, (11): 57-63
|
[162] |
刘云帆, 秦红玲, 韩翠红, 等. 自润滑关节轴承寿命试验及损伤失效机理研究现状[J]. 材料导报, 2021, 35(1): 36–45]. doi: 10.11896/cldb.19110135.
Liu Yunfan, Qin Hongling, Han Cuihong, et al. Research status of life test and damage failure mechanism of self-lubricating spherical plain bearings[J]. Materials Reports, 2021, 35(1): 36–45 doi: 10.11896/cldb.19110135
|
[163] |
卢建军. 自润滑向心关节轴承失效机理及寿命评估方法研究[D]. 西安: 西北工业大学, 2017].
Lu Jianjun. Study on failure mechanisms and life estimation methods of self-lubricating radial spherical plain bearings[D]. Xi’an: Northwestern Polytechnical University, 2017
|
[164] |
周勇勇. 高频轻载条件下自润滑关节轴承加速寿命研究[D]. 洛阳: 河南科技大学, 2022].
Zhou Yongyong. Study on accelerated life of self-lubricating spherical plain bearings under high frequency and light load conditions[D]. Luoyang: Henan University of Science and Technology, 2022
|
[165] |
董炳武, 牛荣军, 徐曼君, 等. 高频轻载自润滑关节轴承加速寿命试验方法[J]. 轴承, 2021, (3): 21–25]. doi: 10.19533/j.issn1000-3762.2021.03.005.
Dong Bingwu, Niu Rongjun, Xu Manjun, et al. Test method for accelerated life of high-frequency light-load self-lubricating spherical plain bearings[J]. Bearing, 2021, (3): 21–25 doi: 10.19533/j.issn1000-3762.2021.03.005
|
[166] |
张亚涛, 邱明, 周大威, 等. 基于双应力加速寿命试验的关节轴承寿命预测与可靠性分析[J]. 润滑与密封, 2020, 45(3): 51–56]. doi: 10.3969/j.issn.0254-0150.2020.03.009.
Zhang Yatao, Qiu Ming, Zhou Dawei, et al. Life prediction and reliability analysis of spherical plain bearings based on double stress accelerated life test[J]. Lubrication Engineering, 2020, 45(3): 51–56 doi: 10.3969/j.issn.0254-0150.2020.03.009
|
[167] |
牛宝禛, 李伦, 李济顺, 等. 基于多因素的风电主轴轴承疲劳寿命分析[J]. 轴承, 2022, (8): 9–14,18]. doi: 10.19533/j.issn1000-3762.2022.08.002.
Niu Baozhen, Li Lun, Li Jishun, et al. Analysis on fatigue life of main shaft bearings in wind turbines based on multiple factors[J]. Bearing, 2022, (8): 9–14,18 doi: 10.19533/j.issn1000-3762.2022.08.002
|
[168] |
Qiu Haobo, Niu Yingchun, Shang Jie, et al. A piecewise method for bearing remaining useful life estimation using temporal convolutional networks[J]. Journal of Manufacturing Systems, 2023, 68: 227–241. doi: 10.1016/j.jmsy.2023.04.002.
|
[169] |
Zhang Yong, Sun Jiahua, Zhang Jing, et al. Health state assessment of bearing with feature enhancement and prediction error compensation strategy[J]. Mechanical Systems and Signal Processing, 2023, 182: 109573. doi: 10.1016/j.ymssp.2022.109573.
|
[170] |
Mohsen M N, Seyed M J. Experimental and data driven measurement of engine dynamometer bearing lifespan using acoustic emission[J]. Applied Acoustics, 2023, 210: 109460.
|
[171] |
Gupta M, Wadhvani R, Rasool A. A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network[J]. Knowledge-Based Systems, 2023, 259: 110070. doi: 10.1016/j.knosys.2022.110070.
|
[172] |
郝秀红, 王树强, 潘登. 航空高频自润滑衬垫材料寿命预测[J]. 燕山大学学报, 2021, 45(1): 17–24]. doi: 10.3969/j.issn.1007-791X.2021.01.003.
Hao Xiuhong, Wang Shuqiang, Pan Deng. Life prediction of self-lubricating liner for aviation high frequency[J]. Journal of Yanshan University, 2021, 45(1): 17–24 doi: 10.3969/j.issn.1007-791X.2021.01.003
|
[173] |
李英, 李宝福, 李如琰. 自润滑关节轴承接触应力分析[J]. 轴承, 2016, (5): 32–36]. doi: 10.19533/j.issn1000-3762.2016.05.011.
Li Ying, Li Baofu, Li Ruyan. Analysis on contact stress of self- lubricating spherical plain bearings[J]. Bearing, 2016, (5): 32–36 doi: 10.19533/j.issn1000-3762.2016.05.011
|
[174] |
魏澳博, 马国政, 李国禄, 等. 自润滑关节轴承磨损寿命研究方法现状与展望[J]. 表面技术, 2023, 52(4): 31–46]. doi: 10.16490/j.cnki.issn.1001-3660.2023.04.003.
Wei Aobo, Ma Guozheng, Li Guolu, et al. Status and prospect of research methods on wear life of self-lubricating spherical plain bearing[J]. Surface Technology, 2023, 52(4): 31–46 doi: 10.16490/j.cnki.issn.1001-3660.2023.04.003
|
[175] |
李佩隆, 郭芳, 姜葳, 等. 高承载下自润滑纤维织物复合材料摩擦磨损性能[J]. 润滑与密封, 2016, 41(3): 1–4]. doi: 10.3969/j.issn.0254-0150.2016.03.001.
Li Peilong, Guo Fang, Jiang Wei, et al. Tribological behaviors of self-lubricating PTFE fabric composites at high-load[J]. Lubrication Engineering, 2016, 41(3): 1–4 doi: 10.3969/j.issn.0254-0150.2016.03.001
|
[176] |
Qiu Ming, Yang Zhuopei, Lu Jianjun, et al. Influence of step load on tribological properties of self-lubricating radial spherical plain bearings with PTFE fabric liner[J]. Tribology International, 2017, 113: 344–353. doi: 10.1016/j.triboint.2017.02.047.
|
[177] |
李彦伟, 林晶, 赵颖春, 等. 自润滑关节轴承磨损寿命影响因素分析[J]. 轴承, 2017, (9): 49–51]. doi: 10.19533/j.issn1000-3762.2017.09.013.
Li Yanwei, Lin Jing, Zhao Yingchun, et al. Analysis on influencing factors of wear life for self-lubricating spherical plain bearings[J]. Bearing, 2017, (9): 49–51 doi: 10.19533/j.issn1000-3762.2017.09.013
|
[178] |
詹华, 张艳, 李振东, 等. 硬质薄膜与自润滑织物衬垫对磨的摩擦磨损性能研究[J]. 表面技术, 2021, 50(11): 243–249]. doi: 10.16490/j.cnki.issn.1001-3660.2021.11.025.
Zhan Hua, Zhang Yan, Li Zhendong, et al. Study on the friction and wear performance of hard film and self-lubricating fabric liner[J]. Surface Technology, 2021, 50(11): 243–249 doi: 10.16490/j.cnki.issn.1001-3660.2021.11.025
|
[179] |
牛荣军, 汪静静, 詹华, 等. 关节轴承配副表面Cr DLC和WDLC薄膜摩擦学性能研究[J]. 农业机械学报, 2020, 51(S2): 603–610].
Niu Rongjun, Wang Jingjing, Zhan Hua, et al. Tribological properties of Cr DLC and WDLC films on the surface of joint bearing pair[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 603–610
|