ISSN   1004-0595

CN  62-1224/O4

Advanced Search
LI Hongbin, SU Yunfeng, HU Tianchang, FAN Hengzhong, ZHENG Xiande, SONG Junjie, ZHANG Yongsheng, HU Litian. Research Progress on Ternary Layered MAB Phases Ceramics and Their Mechanical and Tribological Properties[J]. Tribology, 2025, 45(5): 1−17. DOI: 10.16078/j.tribology.2024044
Citation: LI Hongbin, SU Yunfeng, HU Tianchang, FAN Hengzhong, ZHENG Xiande, SONG Junjie, ZHANG Yongsheng, HU Litian. Research Progress on Ternary Layered MAB Phases Ceramics and Their Mechanical and Tribological Properties[J]. Tribology, 2025, 45(5): 1−17. DOI: 10.16078/j.tribology.2024044

Research Progress on Ternary Layered MAB Phases Ceramics and Their Mechanical and Tribological Properties

Funds: This project was supported by the National Key Research and Development Program of China (2022YFB3809000), National Natural Science Foundation of China (52303386) and Characteristic Demonstration Project in HOME Program of Gansu (GSHZTS 2022-03).
More Information
  • Corresponding author:

    SU Yunfeng, E-mail: yfsu@licp.cas.cn, Tel: +86-931-4968833

    HU Tianchang, E-mail: htchang@licp.cas.cn, Tel: +86-931-4968833

  • Received Date: February 25, 2024
  • Revised Date: May 28, 2024
  • Accepted Date: May 28, 2024
  • Available Online: September 01, 2024
  • MAB phase ceramics, a new class of ternary layered transition metal compounds following MAX phase ceramics are widely concerned attributing to their excellent thermal stability and mechanical properties, such as high temperature resistance, oxidation resistance, high strength and high damage tolerance. The nanolaminar structure of MAB phase ceramics, similar to that of the MAX-phase ceramics, endows them with great application potential in solid lubrication fields, especially for high-temperature lubrication. Moreover, two-dimensional nano-MBenes sheets with graphite- or MoS2-like nanolaminar structures, obtained from etching MAB phase materials, providing a wide range of candidates for friction reduction and wear-resistant additives for composite materials. Currently, experiments have synthesized over 90 MAX phase and 60 MAB phase materials, including bulk, powder, thin film and single crystal forms. The chemical disorder solid solution at M, A, and X/B sites can further expand the family of MAX and MAB phases. Selective solid solution of binary metals at the M site in MAB phases can also yield quaternary layered transition metal borides with out-of-plane or in-plane chemical ordering. Additionally, multi-element solid solution at the M site can produce high-entropy MAB phases, in which high configurational entropy at the M site plays a crucial role in forming multi-element pure phase MAB phases. In the synthesis of MAB phases, inorganic synthesis methods such as powder metallurgy and precursor conversion are generally used. With the concerted efforts of researchers worldwide, several new highlights have emerged in the study of MAB phases, especially in areas such as accident-tolerant materials, high-temperature structural materials and high-temperature lubricating materials, attracting widespread attention. Therefore, controlling the elemental composition and structural morphology of MAB phases will expand the space for optimizing material performance and practical applications. In this paper, ternary layered MAB phase ceramics and their basic structures and preparation methods were introduced, followed by summarizing the current research status and progress of MAB phase ceramics and their 2D MBenes nanomaterials in mechanicsand tribology, involving MoAlB, Fe2AlB2, Mn2AlB2 and Cr2AlB2 systems. On this basis, furthermore, challenges in current research and future directions were proposed. MAB phase materials are currently in the interest-driven frontier research stage. With the continuous discovery of new structures and new compositions, and the maturation of new synthesis methods, the physical and chemical properties of this layered material family are becoming increasingly well-known to researchers.

  • [1]
    Nisar A, Hassan R, Agarwal A, et al. Ultra-high temperature ceramics: aspiration to overcome challenges in thermal protection systems[J]. Ceramics International, 2022, 48(7): 8852–8881. doi: 10.1016/j.ceramint.2021.12.199.
    [2]
    Song Yiming, Mandelli D, Hod O, et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions[J]. Nature Materials, 2018, 17(10): 894–899. doi: 10.1038/s41563-018-0144-z.
    [3]
    Dang Wentao, Ren Shufang, Zhou Jiansong, et al. The tribological properties of Ti3SiC2/Cu/Al/SiC composite at elevated temperatures[J]. Tribology International, 2016, 104: 294–302. doi: 10.1016/j.triboint.2016.09.008.
    [4]
    樊云杰, 张雄飞, 张林, 等. PTFE基耐磨涂层往复滑动摩擦学性能研究[J]. 润滑与密封, 2016, 41(4): 101–105,110]. doi: 10.3969/j.issn.0254-0150.2016.04.021.

    Fan Yunjie, Zhang Xiongfei, Zhang Lin, et al. Tribological properties of PTFE coatings under reciprocating sliding condition[J]. Lubrication Engineering, 2016, 41(4): 101–105,110 doi: 10.3969/j.issn.0254-0150.2016.04.021
    [5]
    管文, 王永欣, 党蕊, 等. 聚合物材料表面耐磨性能提升用非晶碳基薄膜的研究进展[J]. 表面技术, 2020, 49(6): 45–51,75]. doi: 10.16490/j.cnki.issn.1001-3660.2020.06.005.

    Guan Wen, Wang Yongxin, Dang Rui, et al. Research progress of amorphous carbon-based coating for improving wear resistance of polymer materials[J]. Surface Technology, 2020, 49(6): 45–51,75 doi: 10.16490/j.cnki.issn.1001-3660.2020.06.005
    [6]
    4-04-24] (in Chinese)[李谋吉, 杨武芳, 汤洁, 等. 聚硅氮烷/MoS2高温自润滑涂层的制备及性能研究[J/OL]. 摩擦学学报: 1-19[2024-04-24]. https://doi.org/10.16078/j.tribology.2023067]. [Li Mouji, Yang Wufang, Tang Jie, et al. Preparation and properties of polysilazane/MoS2 high temperature self-lubricating coatings[J/OL]. Tribology, 1-19[2024-04-24] [李谋吉, 杨武芳, 汤洁, 等. 聚硅氮烷/MoS2高温自润滑涂层的制备及性能研究[J/OL]. 摩擦学学报: 1-19].

    4-04-24] (in Chinese)[李谋吉, 杨武芳, 汤洁, 等. 聚硅氮烷/MoS2高温自润滑涂层的制备及性能研究[J/OL]. 摩擦学学报: 1-19[2024-04-24]. https://doi.org/10.16078/j.tribology.2023067].
    [7]
    Rosli N F, Nasir M Z M, Antonatos N, et al. MAX and MAB phases: two-dimensional layered carbide and boride nanomaterials for electrochemical applications[J]. ACS Applied Nano Materials, 2019, 2(9): 6010–6021. doi: 10.1021/acsanm.9b01526.
    [8]
    李勉, 黄庆. 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望[J]. 无机材料学报, 2020, 35(1): 1–7]. doi: 10.15541/jim20190560.

    Li Mian, Huang Qing. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes[J]. Journal of Inorganic Materials, 2020, 35(1): 1–7 doi: 10.15541/jim20190560
    [9]
    Barsoum M W, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society, 1996, 79(7): 1953–1956. doi: 10.1111/j.1151-2916.1996.tb08018.x.
    [10]
    高强, 王文珍, 易戈文, 等. 热处理对Ni/Ti2AlC复合材料显微组织和摩擦学性能的影响[J]. 摩擦学学报, 2022, 42(2): 242–253]. doi: 10.16078/j.tribology.2021036.

    Gao Qiang, Wang Wenzhen, Yi Gewen, et al. Influences of annealing on microstructures and tribological properties of Ni/Ti2AlC composites[J]. Tribology, 2022, 42(2): 242–253 doi: 10.16078/j.tribology.2021036
    [11]
    常宝林, 于增光, 王睿杰, 等. 原位生成MoB增强Cu-Sn-Al合金复合材料的摩擦学性能研究[J]. 摩擦学学报, 2022, 42(6): 1116–1126]. doi: 10.16078/j.tribology.2021226.

    Chang Baolin, Yu Zengguang, Wang Ruijie, et al. Tribological properties of In-situ MoB reinforced Cu-Sn-Al composites[J]. Tribology, 2022, 42(6): 1116–1126 doi: 10.16078/j.tribology.2021226
    [12]
    袁锐, 张玉鹏, 王振玉, 等. V2AlC MAX相涂层的宽温域摩擦学性能研究[J]. 摩擦学学报, 2023, 43(5): 537–548]. doi: 10.16078/j.tribology.2022020.

    Yuan Rui, Zhang Yupeng, Wang Zhenyu, et al. Tribological property of V2AlC MAX phase coating over wide temperature range[J]. Tribology, 2023, 43(5): 537–548 doi: 10.16078/j.tribology.2022020
    [13]
    Barsoum M W, Radovic M. Elastic and mechanical properties of the MAX phases[J]. Annual Review of Materials Research, 2011, 41: 195–227. doi: 10.1146/annurev-matsci-062910-100448.
    [14]
    Ji X R, Yi Z, Zhang D, et al. Synthesis, characterization and tribological properties of high purity Ti3SiC2 nanolamellas[J]. Ceramics International, 2014, 40(4): 6219–6224. doi: 10.1016/J.CERAMINT.2013.11.077.
    [15]
    Lorenz M, Travitzky N, Rambo C R. Effect of processing parameters on in situ screen printing-assisted synthesis and electrical properties of Ti3SiC2-based structures[J]. Journal of Advanced Ceramics, 2021, 10: 129–138. doi: 10.1007/s40145-020-0427-0.
    [16]
    Souchet A, Fontaine J, Belin M, et al. Tribological duality of Ti3SiC2[J]. Tribology Letters, 2005, 18(3): 341–352. doi: 10.1007/s11249-004-2761-8.
    [17]
    Bendaoudi S, Bounazef M, Bedia E A A. Tribological performance of Ti3SiC2 containing 8% TiC against the corundum[J]. Mechanika, 2012, 18(6): 698–704. doi: 10.5755/j01.mech.18.6.3165.
    [18]
    殷超超, 黄海鸿, 周丹, 等. 激光表面织构对过盈配合界面微动损伤的影响[J]. 摩擦学学报, 2023, 43(12): 1478–1485]. doi: 10.16078/j.tribology.2022219.

    Yin Chaochao, Huang Haihong, Zhou Dan, et al. Effect of laser surface texturing on fretting damage of interference fit interface[J]. Tribology, 2023, 43(12): 1478–1485 doi: 10.16078/j.tribology.2022219
    [19]
    Wang Zhenyu, Ma Guanshui, Liu Linlin, et al. High-performance Cr2AlC MAX phase coatings: oxidation mechanisms in the 900–1100℃ temperature range[J]. Corrosion Science, 2020, 167: 108492. doi: 10.1016/j.corsci.2020.108492.
    [20]
    Li J J, Qian Y H, Niu D, et al. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment[J]. Applied Surface Science, 2012, 263: 457–464. doi: 10.1016/j.apsusc.2012.09.082.
    [21]
    何乃如, 周昊, 文怀兴, 等. MAX相陶瓷强化方式及机理研究进展[J]. 中国陶瓷, 2019, 55(9): 1–9]. doi: 10.16521/j.cnki.issn.1001-9642.2019.09.001.

    He Nairu, Zhou Hao, Wen Huaixing, et al. Research progress on strengthening methods and mechanisms of MAX phase ceramics[J]. China Ceramics, 2019, 55(9): 1–9 doi: 10.16521/j.cnki.issn.1001-9642.2019.09.001
    [22]
    吴辉, 郭彪, 李强, 等. Cr2AlC含量对铜基复合材料摩擦磨损性能的影响[J]. 粉末冶金技术, 2019, 37(3): 184–190]. doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004.

    Wu Hui, Guo Biao, Li Qiang, et al. Effects of Cr2AlC content on friction and wear properties of copper matrix composites[J]. Powder Metallurgy Technology, 2019, 37(3): 184–190 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.004
    [23]
    王帅, 杨军. MAX相陶瓷摩擦学研究进展[J]. 摩擦学学报, 2018, 38(6): 735–746]. doi: 10.16078/j.tribology.2018121.

    Wang Shuai, Yang Jun. Progress research on the tribology of MAX phase ceramics[J]. Tribology, 2018, 38(6): 735–746 doi: 10.16078/j.tribology.2018121
    [24]
    Wang Wenjuan, Zhai Hongxiang, Chen Lin, et al. Preparation and mechanical properties of in situ TiC x–Ni (Si, Ti) alloy composites[J]. Materials Science and Engineering: A, 2014, 616: 214–218. doi: 10.1016/j.msea.2014.08.020.
    [25]
    Hu Wenqiang, Huang Zhenying, Cai Leping, et al. Preparation and mechanical properties of TiCx-Ni3(Al, Ti)/Ni composites synthesized from Ni alloy and Ti3AlC2 powders[J]. Materials Science and Engineering: A, 2017, 697: 48–54. doi: 10.1016/j.msea.2017.04.113.
    [26]
    Hu Wenqiang, Huang Zhenying, Yu Qun, et al. Ti2AlC triggered in situ ultrafine TiC/Inconel 718 composites: Microstructure and enhanced properties[J]. Journal of Materials Science & Technology, 2020, 51: 70–78. doi: 10.1016/j.jmst.2020.04.002.
    [27]
    Wang Wenzhen, Sokol M, Kota S, et al. Reaction paths and microstructures of nickel and Ti2AlC mixtures hot pressed and annealed in the 1050–1350 ℃ temperature range[J]. Journal of Alloys and Compounds, 2020, 828: 154193. doi: 10.1016/j.jallcom.2020.154193.
    [28]
    Zhu Shengyu, Cheng Jun, Qiao Zhuhui, et al. High temperature solidlubricating materials: a review[J]. Tribology International, 2019, 133: 206–223. doi: 10.1016/j.triboint.2018.12.037.
    [29]
    Gupta S, Filimonov D, Palanisamy T, et al. Tribological behavior of select MAX phases against Al2O3 at elevated temperatures[J]. Wear, 2008, 265(3-4): 560–565. doi: 10.1016/j.wear.2007.11.018.
    [30]
    Ren Shufang, Meng Junhu, Lu Jinjun, et al. Tribo-physical and tribo-chemical aspects of WC-based cermet/Ti3SiC2 tribo-pair at elevated temperatures[J]. Tribology International, 2010, 43(1-2): 512–517. doi: 10.1016/j.triboint.2009.08.007.
    [31]
    Zabinski J, Corneille J, Prasad S, et al. Lubricious zinc oxide films: synthesis, characterization and tribological behaviour[J]. Journal of Materials Science, 1997, 32: 5313–5319. doi:10.1023/A: 1018614811131. doi: 10.1023/A:1018614811131.
    [32]
    Gardos M N. The effect of anion vacancies on the tribological properties of rutile (TiO2– x)[J]. Tribology Transactions, 1988, 31(4): 427–436. doi: 10.1080/10402008808981844.
    [33]
    Zhen Jinming, Cheng Jun, Li Maohua, et al. Lubricating behavior of adaptive nickel alloy matrix composites with multiple solid lubricants from 25 ℃ to 700 ℃[J]. Tribology International, 2017, 109: 174–181. doi: 10.1016/j.triboint.2016.12.030.
    [34]
    Tallman D J, Anasori B, Barsoum M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115–125. doi: 10.1080/21663831.2013.806364.
    [35]
    Zhou Y C, Dong H Y, Yu B H. Development of two-dimensional titanium tin carbide (Ti2SnC) plates based on the electronic structure investigation[J]. Material Research Innovations, 2000, 4(1): 36–41. doi: 10.1007/s100190000065.
    [36]
    Lu Jin rong, Zhou Yang, Zheng Yong, et al. Effects of sintering process on the properties of Ti3SiC2/Cu composite[J]. Key Engineering Materials, 2012, 512–515: 377–381. doi: 10.4028/www.scientific.net/kem.512-515.377.
    [37]
    Xie X, Li X, Jia Q, et al. Mechanical properties and toughening mechanisms of highly textured Ti3AlC2 composite material[J]. Journal of the European Ceramic Society, 2022, 42(13): 5493–5504. doi: 10.1016/j.jeurceramsoc.2022.06.071.
    [38]
    Shi Xiaoliang, Zhai Wenzheng, Xu Zengshi, et al. Synergetic lubricating effect of MoS2 and Ti3SiC2 on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range[J]. Materials & Design, 2014, 55: 93–103. doi: 10.1016/j.matdes.2013.09.072.
    [39]
    Jiang Xiaosong, Song Tingfeng, Shao Zhenyi, et al. Synergetic effect of graphene and MWCNTs on microstructure and mechanical properties of Cu/Ti3SiC2/C nanocomposites[J]. Nanoscale Research Letters, 2017, 12(1): 607. doi: 10.1186/s11671-017-2378-0.
    [40]
    Lian Weiqi, Mai Yongjin, Wang Jie, et al. Fabrication of graphene oxide-Ti3AlC2 synergistically reinforced copper matrix composites with enhanced tribological performance[J]. Ceramics International, 2019, 45(15): 18592–18598. doi: 10.1016/j.ceramint.2019.06.082.
    [41]
    Du Chengfeng, Xue Yaqing, Zeng Qingyan, et al. Mo-doped Cr-Ti-Mo ternary o-MAX with ultra-low wear at elevated temperatures[J]. Journal of the European Ceramic Society, 2022, 42(16): 7403–7413. doi: 10.1016/j.jeurceramsoc.2022.09.020.
    [42]
    刘智谋. 新型四元MAX相(Cr2/3Ti1/3)3AlC2的合成、晶体结构表征及性能研究[D]. 北京: 中国科学院大学, 2015].

    Liu Zhimou. Synthesis, crystal structure characterization and properties of a novel quaternary MAX phase (Cr2/3Ti1/3)3AlC2[D]. Beijing: University of Chinese Academy of Sciences, 2015
    [43]
    Yao Yufang, Miao Nanxi, Gong Yutong, et al. Theoretical exploration of quaternary hexagonal MAB phases and two-dimensional derivatives[J]. Nanoscale, 2021, 13(31): 13208–13214. doi: 10.1039/d1nr02882k.
    [44]
    柏跃磊, 尹航, 宋广平, 等. 高韧性三元层状陶瓷: 从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1–23]. doi: 10.11868/j.issn.1001-4381.2020.001171.

    Bai Yuelei, Yin Hang, Song Guangping, et al. High-fracture-toughness ternary layered ceramics: from the MAX to MAB phases[J]. Journal of Materials Engineering, 2021, 49(5): 1–23 doi: 10.11868/j.issn.1001-4381.2020.001171
    [45]
    Ali R, Huang T, Song P, et al. Tribological performance and phase transition of MAX-phase/YSZ abradable seal coating produced by air plasma spraying[J]. Ceramics International, 2022, 48(3): 4188–4199. doi: / 10.1016/j.ceramint.2021.10.210. doi: 10.1016/j.ceramint.2021.10.210.
    [46]
    Rosenkranz A, Zambrano D, Przyborowski A, et al. MAB-phases and beyond—a tribological success story?[J]. Advanced Materials Interfaces, 2022, 9(26): 2200869. doi: 10.1002/admi.202200869.
    [47]
    Ade M, Hillebrecht H. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2) nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases[J]. Inorganic Chemistry, 2015, 54(13): 6122–6135. doi: 10.1021/acs.inorgchem.5b00049.
    [48]
    Natu V, Kota S S, Barsoum M W. X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides[J]. Journal of the European Ceramic Society, 2020, 40(2): 305–314. doi: 10.1016/j.jeurceramsoc.2019.09.040.
    [49]
    Kota S, Sokol M, Barsoum M W. A progress report on the MAB phases: atomically laminated, ternary transition metal borides[J]. International Materials Reviews, 2020, 65(4): 226–255. doi: 10.1080/09506608.2019.1637090.
    [50]
    Zhang Haiming, Xiang Huimin, Dai Fuzhi, et al. First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2[J]. Journal of Materials Science & Technology, 2018, 34(11): 2022–2026. doi: 10.1016/j.jmst.2018.02.024.
    [51]
    Khazaei M, Wang J J, Estili M, et al. Novel MAB phases and insights into their exfoliation into 2D MBenes[J]. Nanoscale, 2019, 11(23): 11305–11314. doi: 10.1039/C9NR01267B.
    [52]
    Wang Junjie, Ye Tiannan, Gong Yutong, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB[J]. Nature Communications, 2019, 10(1): 2284. doi: 10.1038/s41467-019-10297-8.
    [53]
    Yu Zengguang, Chen Jiao, Cheng Jun, et al. High temperature tribological behaviors of MoAlB ceramic from 800 to 1200 ℃[J]. Tribology International, 2023, 185: 108522. doi: 10.1016/j.triboint.2023.108522.
    [54]
    Benamor A, Hadji Y, Kota S, et al. Friction and wear characteristics of the nanolaminated ternary transition metal boride: Mn2AlB2[J]. Wear, 2022, 492-493: 204232. doi: 10.1016/j.wear.2021.204232.
    [55]
    Mou Junji, Li Shibo, Zhang Weiwei, et al. Deintercalation of Al from MoAlB by molten salt etching to achieve a Mo 2AlB 2 compound and 2D MoB nanosheets[J]. Journal of Advanced Ceramics, 2023, 12(5): 943–953. doi: 10.26599/jac.2023.9220729.
    [56]
    Zhou Jie, Palisaitis J, Halim J, et al. Boridene: two-dimensional Mo4/3B2- x with ordered metal vacancies obtained by chemical exfoliation[J]. Science, 2021, 373(6556): 801–805. doi: 10.1126/science.abf6239.
    [57]
    Miao Nanxi, Gong Yutong, Zhang Huaiyu, et al. Discovery of two-dimensional hexagonal MBene HfBO and exploration on its potential for lithium-ion storage[J]. Angewandte Chemie-International Edition, 2023, 62(36): e202308436. doi: 10.1002/anie.202308436.
    [58]
    Dai F Z, Zhang H, Xiang H, et al. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. Journal of Materials Science & Technology, 2020, 39: 161–166. doi: 10.1016/j.jmst.2019.01.017.
    [59]
    Sharma A, Rangra V S, Thakur A. Synthesis, properties, and applications of MBenes (two-dimensional metal borides) as emerging 2D materials: a review[J]. Journal of Materials Science, 2022, 57: 12738–12751. doi: 10.1007/s10853-022-07378-3.
    [60]
    孙东栋. 三元过渡金属硼化物的高温力学与摩擦磨损行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2019].

    Sun Dongdong. Study on high-temperature mechanical, friction and wear behavior of ternary transition-metal borides[D]. Harbin: Harbin Institute of Technology, 2019
    [61]
    Bai Yuelei, Qi Xinxin, Duff A, et al. Density functional theory insights into ternary layered boride MoAlB[J]. Acta Materialia, 2017, 132: 69–81. doi: 10.1016/j.actamat.2017.04.031.
    [62]
    Bei G P, van der Zwaag S, Kota S, et al. Ultra-high temperature ablation behavior of MoAlB ceramics under an oxyacetylene flame[J]. Journal of the European Ceramic Society, 2019, 39(6): 2010–2017. doi: 10.1016/j.jeurceramsoc.2019.01.016.
    [63]
    刘艳明, 张依偲, 汪欣, 等. 三元层状MoAlB材料的研究进展[J]. 稀有金属材料与工程, 2023, 52(07): 2639–2652].

    Liu Yanming, Zhang Yicai, Wang Xin, et al. Research progress of ternary-layered boride MoAlB[J]. Rare Metal Materialsand Engineering, 2023, 52(07): 2639–2652
    [64]
    Shi Ouling, Xu Ludi, Jiang Anna, et al. Synthesis and oxidation resistance of MoAlB single crystals[J]. Ceramics International, 2019, 45(2): 2446–2450. doi: 10.1016/j.ceramint.2018.10.170.
    [65]
    Yu Zengguang, Tan Hui, Wang Shuai, et al. High-temperature tribological behaviors of MoAlB ceramics sliding against Al2O3 and Inconel 718 alloy[J]. Ceramics International, 2020, 46(10): 14713–14720. doi: 10.1016/j.ceramint.2020.02.275.
    [66]
    Fuka M, Dey M, Gupta S. Novel ternary boride (MoAlB) particulates as solid lubricant additives in Ni-matrix composites[C]//2018 Joint Propulsion Conference, Cincinnati, 2018: AIAA2018-4893. doi: 10.2514/6.2018-4893.
    [67]
    Yu Zengguang, Chen Jiao, Cheng Jun, et al. Effects of in-situ formed Ag2Al on tribological properties of nominal MoAlB-Ag composites at high temperatures[J]. Tribology International, 2022, 176: 107901. doi: 10.1016/j.triboint.2022.107901.
    [68]
    Tan Hui, Sun Qichun, Zhu Shengyu, et al. High temperature tribological behavior of Mo-12Si-8.5B alloy reinforced with MoAlB ceramic[J]. Tribology International, 2020, 150: 106344. doi: 10.1016/j.triboint.2020.106344.
    [69]
    Li Ning, Bai Yuelei, Wang Shuai, et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders[J]. Journal of the American Ceramic Society, 2017, 100(10): 4407–4411. doi: 10.1111/jace.15058.
    [70]
    Jeitschko W. The crystal structure of Fe2AlB2[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1969, 25(1): 163–165. doi: 10.1107/s0567740869001944.
    [71]
    Song Guangping, Sun Dongdong, He Xiaodong, et al. Friction and wear behavior of Fe2AlB2 nanolaminates against GCr15 steel counterpart[J]. Ceramics International, 2020, 46(12): 19912–19918. doi: 10.1016/j.ceramint.2020.05.056.
    [72]
    Bai Yuelei, Sun Dongdong, Li Ning, et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 151–160. doi: 10.1016/j.ijrmhm.2019.01.010.
    [73]
    Liu Jie, Li Shibo, Yao Boxiang, et al. Thermal stability and thermal shock resistance of Fe2AlB2[J]. Ceramics International, 2018, 44(13): 16035–16039. doi: 10.1016/j.ceramint.2018.06.042.
    [74]
    Wang Ying, Yang Lingxu, Liu Ruijia, et al. Microstructure, electrical conductivity and mechanical properties of a novel MAB phase Cr2AlB2 reinforced Cu-matrix composites[J]. Journal of Materials Science, 2022, 57(42): 19769–19784. doi: 10.1007/s10853-022-07858-6.
    [75]
    Andrew R C, Mapasha R E, Ukpong A M, et al. Mechanical properties of graphene and boronitrene[J]. Physical Review B, 2012, 85(12): 125428. doi: 10.1103/physrevb.85.125428.
    [76]
    Mannix A J, Zhou X F, Kiraly B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs[J]. Science, 2015, 350(6267): 1513–1516. doi: 10.1126/science.aad1080.
    [77]
    Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996.
    [78]
    Lipatov A, Lu H D, Alhabeb M, et al. Elastic properties of 2D Ti3C2T x MXene monolayers and bilayers[J]. Science Advances, 2018, 4(6): eaat0491. doi: 10.1126/sciadv.aat0491.
    [79]
    Li Youbing, Shao Hui, Lin Zifeng, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894–899. doi: 10.1038/s41563-020-0657-0.
    [80]
    Li Bing, Wu Yang, Li Neng, et al. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9261–9267. doi: 10.1021/acsami.9b20552.
    [81]
    Guo Xiangyu, Lin Shiru, Gu Jinxing, et al. Establishing a theoretical landscape for identifying basal plane active 2D metal borides (MBenes) toward nitrogen electroreduction[J]. Advanced Functional Materials, 2021, 31(6): 2008056. doi: 10.1002/adfm.202008056.
    [82]
    Guo Zhonglu, Zhou Jian, Sun Zhimei. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis[J]. Journal of Materials Chemistry A, 2017, 5(45): 23530–23535. doi: 10.1039/C7TA08665B.
    [83]
    Dahlqvist M, Zhou J, Persson I, et al. Out-of-plane ordered laminate borides and their 2D Ti-based derivative from chemical exfoliation[J]. Advanced Materials, 2021, 33(38): 2008361. doi: 10.1002/adma.202008361.
    [84]
    Miao Nanxi, Wang Junjie, Gong Yutong, et al. Computational prediction of boron-based MAX phases and MXene derivatives[J]. Chemistry of Materials, 2020, 32(16): 6947–6957. doi: 10.1021/acs.chemmater.0c02139.
    [85]
    Khaledialidusti R, Khazaei M, Wang V, et al. Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2021, 33(15): 155503. doi: 10.1088/1361-648X/abbb0e.
    [86]
    Zhang Bikun, Zhou Jian, Guo Zhonglu, et al. Two-dimensional chromium boride MBenes with high HER catalytic activity[J]. Applied Surface Science, 2020, 500: 144248. doi: 10.1016/j.apsusc.2019.144248.
    [87]
    张海明. MAB相Cr-Al-B体系三元层状硼化物的制备与性能研究[D]. 北京: 北京交通大学, 2021].

    Zhang Haiming. Preparation and properties of layered ternary borides in Cr-Al-B system of MAB phases[D]. Beijing: Beijing Jiaotong University, 2021
    [88]
    王瑞. 高纯Fe2AlB2粉体的合成及ZrB2复合陶瓷的制备与性能研究[D]. 福州: 福建师范大学, 2020].

    Wang Rui. Synthesis of high purity Fe2AlB2 powder and preparation and properties of ZrB2 composite ceramics[D]. Fuzhou: FuJian Normal University[D]. 2020
    [89]
    齐欣欣, 宋广平, 尹维龙, 等. 新型三元层状硼化物Cr4AlB4的物相稳定性和力学行为分析[J]. 无机材料学报, 2020, 35(1): 53–60]. doi: 10.15541/jim20190160.

    Qi Xinxin, Song Guangping, Yin Weilong, et al. Analysis on phase stability and mechanical property of newly-discovered ternary layered boride Cr4AlB4[J]. Journal of Inorganic Materials, 2020, 35(1): 53–60 doi: 10.15541/jim20190160

Catalog

    Article views (55) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return