Citation: | WEI Chaofan, DU Sanming, FU Lihua, FU Bicong, ZHANG Yongzhen, GAO Yuan'an, HUA Lvdong, ZHENG Xiaomeng. Effect of Compound Isothermal Quenching on Bainite Transformation and Wear Properties of GCr15Si1Mo Steel[J]. Tribology, 2024, 44(7): 973−984. DOI: 10.16078/j.tribology.2023123 |
Nano-bainite bearing steel has excellent comprehensive properties, but the long isothermal transition period is the main problem that limits its wide application. In order to accelerate the nano-bainite transformation of GCr15Si1Mo bearing steel, a compound three-step (157 ℃+190 ℃+250 ℃) isothermal quenching process was designed in this paper as a comparison with the conventional one-step (190 ℃) isothermal quenching process, and the test steels were heat-treated under different processes. The microstructure and mechanical properties of GCr15Si1Mo bearing steel were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM) and Rockwell hardness tester. The tribological properties and wear mechanism of the test steel were investigated by using UMT friction, wear testing machine and 3D topography profilometer. The results showed that the compound isothermal quenching process accelerated the transformation of nano-bainite from the two stages of gestation and transformation. Compared with the conventional isothermal quenching process, the phase transition time of the compound isothermal quenching process decreased by 5 h when they both transformed the equivalent content of bainite (about 53%~55%). Therefore it could significantly improve the transformation efficiency of nano-bainite. In the compound isothermal quenching process, the residual austenite content in the microstructure was obviously reduced, and the block residual austenite was largely transformed into thin film residual austenite, thus the impact toughness of the material which was treated by using the compound isothermal quenching was obviously improved. With prolonging the compound isothermal quenching time, the impact toughness of the material firstly increased and then decreased. When the compound isothermal quenching process parameter was 157 ℃×5 min+190 ℃×2.0 h+250 ℃×1.0 h, the strength and toughness matching and wear resistance of the material were the best, and the wear resistance of the material was better than that of the conventional isothermal quenching process. The results indicated that the dominant wear mechanism of the test steel was abrasive wear after the compound isothermal quenching and the conventional isothermal quenching, but the degree of abrasive wear of the material under the compound isothermal quenching process was reduced and accompanied by slight adhesive wear and fatigue wear.
[1] |
Zhang Fucheng, Yang Zhinan. Development of and perspective on high-performance nanostructured bainitic bearing steel[J]. Engineering, 2019, 5(2): 319–328. doi: 10.1016/j.eng.2018.11.024.
|
[2] |
杨晓蔚. 高端轴承制造的关键技术[J]. 金属加工(冷加工), 2013(16): 16–18]. doi: 10.3969/j.issn.1674-1641.2013.16.008.
Yang XiaoWei. Key technology of high-end bearing manufacturing[J]. Metal Working (Metal Cutting), 2013(16): 16–18 doi: 10.3969/j.issn.1674-1641.2013.16.008
|
[3] |
马子豪, 王瑞, 赵海涛, 等. 圆锥滚子轴承润滑与动力学耦合研究[J]. 摩擦学学报, 2022, 42(1): 55–64]. doi: 10.16078/j.tribology.2020278.
Ma Zihao, Wang Rui, Zhao Haitao, et al. Coupling behavior of lubrication and dynamics for tapered roller bearing[J]. Tribology, 2022, 42(1): 55–64 doi: 10.16078/j.tribology.2020278
|
[4] |
李昭昆, 雷建中, 徐海峰, 等. 国内外轴承钢的现状与发展趋势[J]. 钢铁研究学报, 2016, 28(3): 1–12]. doi: 10.13228/j.boyuan.issn1001-0963.20150345.
Li Zhaokun, Lei Jianzhong, Xu Haifeng, et al. Current status and development trend of bearing steel in China and abroad[J]. Journal of Iron and Steel Research, 2016, 28(3): 1–12 doi: 10.13228/j.boyuan.issn1001-0963.20150345
|
[5] |
刘耀中, 侯万果, 王玉良, 等. 滚动轴承材料及热处理进展与展望[J]. 轴承, 2020, (1): 55–63]. doi: 10.19533/j.issn1000-3762.2020.01.012.
Liu Yaozhong, Hou Wanguo, Wang Yuliang, et al. Progress and prospect on materials and heat treatment for rolling bearings[J]. Bearing, 2020, (1): 55–63 doi: 10.19533/j.issn1000-3762.2020.01.012
|
[6] |
郭军, 杨卯生, 卢德宏, 等. Cr4Mo4V轴承钢滚动接触疲劳和磨损性能研究[J]. 摩擦学学报, 2017, 37(2): 155–166]. doi: 10.16078/j.tribology.2017.02.003.
Guo Jun, Yang Maosheng, Lu Dehong, et al. Rolling contact fatigue and wear characteristics of Cr4Mo4V bearing steel[J]. Tribology, 2017, 37(2): 155–166 doi: 10.16078/j.tribology.2017.02.003
|
[7] |
苏丽婷. 新型贝氏体轴承钢的组织与压缩、接触疲劳及磨损性能[D]. 秦皇岛: 燕山大学, 2016].
Su Liting. Study on microstructure and properties of compression, contact fatigue and wear in new type bainitic bearing steel[D]. Qinhuangdao: Yanshan University, 2016
|
[8] |
Bhadeshia H K D H. The first bulk nanostructured metal[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014202. doi: 10.1088/1468-6996/14/1/014202.
|
[9] |
Zhang P, Zhang F C, Yan Z G, et al. Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel[J]. Wear, 2011, 271(5-6): 697–704. doi: 10.1016/j.wear.2010.12.025.
|
[10] |
Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite[J]. Materials Science and Technology, 2002, 18(3): 279–284. doi: 10.1179/026708301225000725.
|
[11] |
Solano-Alvarez W, Pickering E J, Bhadeshia H K D H. Degradation of nanostructured bainitic steel under rolling contact fatigue[J]. Materials Science and Engineering: A, 2014, 617: 156–164. doi: 10.1016/j.msea.2014.08.071.
|
[12] |
Zhang P, Zhang Fu cheng, Yan Z G, et al. Rolling contact fatigue property of low-temperature bainite in surface layer of a low carbon steel[J]. Materials Science Forum, 2011, 675–677: 585–588. doi: 10.4028/www.scientific.net/msf.675-677.585.
|
[13] |
Zhao J, Wang T S, Lv B, et al. Microstructures and mechanical properties of a modified high-C–Cr bearing steel with nano-scaled bainite[J]. Materials Science and Engineering: A, 2015, 628: 327–331. doi: 10.1016/j.msea.2014.12.121.
|
[14] |
郑春雷, 佘丽, 王艳辉, 等. 高碳贝氏体轴承钢滚动接触疲劳性能的研究[J]. 机械工程学报, 2017, 53(24): 110–117]. doi: 10.3901/JME.2017.24.110.
Zheng Chunlei, She Li, Wang Yanhui, et al. Rolling contact fatigue behaviors of high carbon bainitic bearing steel[J]. Journal of Mechanical Engineering, 2017, 53(24): 110–117 doi: 10.3901/JME.2017.24.110
|
[15] |
Yoozbashi M N, Yazdani S, Wang T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production[J]. Materials & Design, 2011, 32(6): 3248–3253. doi: 10.1016/j.matdes.2011.02.031.
|
[16] |
Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon[J]. Materials Science and Engineering: A, 2012, 549: 185–192. doi: 10.1016/j.msea.2012.04.031.
|
[17] |
赵敬. 高碳轴承钢纳米贝氏体组织与性能的研究[D]. 秦皇岛: 燕山大学, 2013].
Zhao Jing. Microstructure and mechanical properties of nanostructure bainite used for bearings[D]. Qinhuangdao: Yanshan University, 2013
|
[18] |
刘澄, 赵斌, 赵振波, 等. 碳在超级贝氏体钢中的作用[J]. 金属热处理, 2015, 40(2): 1–7]. doi: 10.13251/j.issn.0254-6051.2015.02.001.
Liu Cheng, Zhao Bin, Zhao Zhenbo, et al. Role of carbon in super bainite steels[J]. Heat Treatment of Metals, 2015, 40(2): 1–7 doi: 10.13251/j.issn.0254-6051.2015.02.001
|
[19] |
Sourmail T, Smanio V. Low temperature kinetics of bainite formation in high carbon steels[J]. Acta Materialia, 2013, 61(7): 2639–2648. doi: 10.1016/j.actamat.2013.01.044.
|
[20] |
张春生. 预冷变形处理对GCr15Si1Mo轴承钢组织与性能的影响[D]. 秦皇岛: 燕山大学, 2021].
Zhang Chunsheng. Effect of pre cold deformation on microstructure and properties of GCr15Si1Mo bearing steel[D]. Qinhuangdao: Yanshan University, 2021
|
[21] |
Avishan B, Khoshkebari S M, Yazdani S. Effect of pre-existing martensite within the microstructure of nano bainitic steel on its mechanical properties[J]. Materials Chemistry and Physics, 2021, 260: 124160. doi: 10.1016/j.matchemphys.2020.124160.
|
[22] |
Ravi A M, Sietsma J, Santofimia M J. The role of grain-boundary cementite in bainite formation in high-carbon steels[J]. Scripta Materialia, 2020, 185: 7–11. doi: 10.1016/j.scriptamat.2020.03.042.
|
[23] |
于新攀. 预相变对中碳超细贝氏体钢相变行为及其热稳定性的影响[D]. 北京: 北京科技大学, 2021].
Yu Xinpan. Effect of pretransition on phase transformation behavior and thermal stability of medium carbon ultra-fine bainite steel[D]. Beijing: University of Science and Technology Beijing, 2021
|
[24] |
Yang Zhinan, Chu Chunhe, Jiang Feng, et al. Accelerating nano-bainite transformation based on a new constructed microstructural predicting model[J]. Materials Science and Engineering: A, 2019, 748: 16–20. doi: 10.1016/j.msea.2019.01.061.
|
[25] |
Fielding L C D, Jones N G, Walsh J, et al. Synchrotron analysis of toughness anomalies in nanostructured bainite[J]. Acta Materialia, 2016, 105: 52–58. doi: 10.1016/j.actamat.2015.11.029.
|
[26] |
Zhao J, Hou C S, Zhao G, et al. Microstructures and mechanical properties of bearing steels modified for preparing nanostructured bainite[J]. Journal of Materials Engineering and Performance, 2016, 25(10): 4249–4255. doi: 10.1007/s11665-016-2289-8.
|
[27] |
郭辉. 超细贝氏体钢低温相变加速技术及其塑性变形规律[D]. 北京: 北京科技大学, 2018].
Guo Hui. Acceleration of low temperature phase transformation and mechanism of plastic deformation in ultrafine bainitic steel[D]. Beijing: University of Science and Technology Beijing, 2018
|
[28] |
毛艳珊, 杜三明, 傅丽华, 等. 等温淬火工艺对GCr15SiMo钢微观组织和摩擦磨损性能的影响[J]. 摩擦学学报, 2023, 43(7): 778–790]. doi: 10.16078/j.tribology.2022084.
Mao Yanshan, Du Sanming, Fu Lihua, et al. Effect of isothermal quenching process on the microstructure and wear properties of GCr15SiMo steel[J]. Tribology, 2023, 43(7): 778–790
|
[29] |
王艳辉. 大功率风电轴承用纳米贝氏体钢化学成分设计与组织性能调控[D]. 秦皇岛: 燕山大学, 2017].
Wang Yanhui. Chemical component design, microstructure and properties control of nanobainitic steels used for high-power wind power bearing[D]. Qinhuangdao: Yanshan University, 2017
|
[30] |
Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Acceleration of low-temperature bainite[J]. ISIJ International, 2003, 43(11): 1821–1825. doi: 10.2355/isijinternational.43.1821.
|
[31] |
Fu Lihua, Zhou Meng, Wang Yanlin, et al. The microstructure transformations and wear properties of nanostructured bainite steel with different Si content[J]. Materials, 2022, 15(18): 6252. doi: 10.3390/ma15186252.
|
[32] |
焦岩, 李祖来, 山泉等. 等温淬火热处理工艺对Fe-0.5C-2.0Si-2.5Mn钢冲击磨损性能的影响[J]. 摩擦学学报, 2017, 37(1): 52–58]. doi: 10.16078/j.tribology.2017.05.008.
Jiao Yan, Li Zulai, Shan Quan, et al. Effect of impact wear on isothermal quenching of Fe-0.5C-2.0Si-2.5Mn steel[J]. Tribology, 2017, 37(1): 52–58 doi: 10.16078/j.tribology.2017.05.008
|
[33] |
朱晓彤, 潘金芝, 赵秀娟, 等. 接触应力对FCB车轮钢组织演变与性能的影响[J]. 摩擦学学报, 2021, 41(5): 749–757]. doi: 10.16078/j.tribology.2020150.
Zhu Xiaotong, Pan Jinzhi, Zhao Xiujuan, et al. Effect of contact stress on the evolution and properties of FCB wheel steel[J]. Tribology, 2021, 41(5): 749–757 doi: 10.16078/j.tribology.2020150
|
[34] |
马彪, 傅丽华, 上官宝, 等. GCr15及G20CrNi2Mo轴承钢材料微观组织和摩擦磨损性能研究[J]. 材料导报, 2021, 35(16): 16120-16125].
Ma Biao, Fu Lihua, Shangguan Bao, et al. Research on microstructure and friction wear performance of GCr15 and G20CrNi2Mo bearing steel[J]. Materials Reports, 2021, 35(16): 16120–16125
|
[35] |
唐鹏, 李杰, 涂小慧, 等. 两种碳含量Q-P马氏体钢冲击磨损行为研究[J]. 摩擦学学报, 2023, 43(2): 189–196]. doi: 10.16078/j.tribology. 2021248.
Tang Peng, Li Jie, Tu Xiaohui, et al. Effect of carbon content on wear resistance resistant properties of quenching-partitioning martensitic steel[J]. Tribology, 2023, 43(2): 189–196 doi: 10.16078/j.tribology.2021248
|