Citation: | SHI Hongxing, ZHANG Xiaogang, ZHANG Yali, CUI Wen, ZHANG Guoxian, JIN Zhongmin. Advance in the Bio-Mechanical and Bio-Tribological Evaluation of Hip Prosthesis[J]. TRIBOLOGY, 2023, 43(2): 123-142. DOI: 10.16078/j.tribology.2021225 |
The hip joint is the largest and most stable load-bearing joint in the human body. Joint damage or disease often limits its function, which seriously affects life quality. With the aging process and the increase in the amount of young patients, higher requirements are placed on the function and performance of hip prostheses. To speed up the rehabilitation process, prolong the service life of orthopedic implants, and eliminate or reduce the possibility of future revisions, the joint prosthesis needs a careful preclinical evaluation before it is put on the market, that is, to evaluate the safety and effectiveness of the artificial joint prosthesis. Because, they present a significant inherent potential for hazards. Thus, safety and effectiveness are always the most important considerations before clinical application. The performance evaluation of artificial hip prosthesis is related to its loading condition in the human body. Artificial hip prostheses are often subjected to complex loads, movements, and human body fluid environments in vivo. The construction of complex environments for the investigation on the service behavior of the artificial hip joint prosthesis in vivo is conducive to reducing the failure of the prosthesis and improving patient satisfaction. Through literature research, this paper expounds on the relevant evaluation standards and methods of hip prostheses, points out the limitations of the existing evaluation methods, and proposes future improvements. For the evaluation of materials used in joint prostheses, relevant institutions have formulated a series of standard procedures to evaluate their mechanical and tribological characteristics, but further research is needed for the performance evaluation of porous materials. The mechanical and tribological evaluations of artificial hip joint components have formed relevant testing standards, but most of them are too simplified, and some of the other evaluation measures are still in the stage of laboratory research. There are no relevant evaluation and test standards for the biomechanical performance and movement function evaluation on the artificial hip joint prosthesis, and some exsiting approaches are all in the stage of laboratory research. Among them, there are many studies on performance/function evaluation, but the motions and loads used in the research are different from the real in vivo environment. In addition, different patient-specific factors, such as male and female, old and young, height and short, fat and thin, different prosthesis size, different prosthesis design, and other factors, also influence the in vivo mechanical environment of the artificial hip prosthesis. Therefore, it is of great significance to the development of preclinical evaluation of orthopedic implants by establishing a systematic and hierarchical hip prosthesis evaluation system, applying the loads which is equivalent to loading conditions of the prosthesis in vivo, and coupling the interaction among various influencing factors.
[1] |
崔文, 张亚丽, 王志强, 等. 人工髋、膝关节磨损测试标准及模拟试验机研究进展[J]. 摩擦学学报, 2019, 39(2): 248–258 doi: 10.16078/j.tribology.2018152
Cui Wen, Zhang Yali, Wang Zhiqiang, et al. Review of the artificial hip and knee wear testing standards and simulation testing machines[J]. Tribology, 2019, 39(2): 248–258 doi: 10.16078/j.tribology.2018152
|
[2] |
Meding J B, Galley M R, Ritter M A. High survival of uncemented proximally porous-coated titanium alloy femoral stems in osteoporotic bone[J]. Clinical Orthopaedics and Related Research®, 2010, 468(2): 441–447. doi: 10.1007/s11999-009-1035-z
|
[3] |
边焱焱, 程开源, 常晓, 等. 2011至2019年中国人工髋膝关节置换手术量的初步统计与分析[J]. 中华骨科杂志, 2020, 40(21): 1453–1460 doi: 10.3760/cma.j.cn121113-20200320-00177
Bian Yanyan, Cheng Kaiyuan, Chang Xiao, et al. Reports and analysis of amount of hip and knee arthroplasty in China from 2011 to 2019[J]. Orthopaedic Surgery, 2020, 40(21): 1453–1460 doi: 10.3760/cma.j.cn121113-20200320-00177
|
[4] |
Nho S J, Kymes S M, Callaghan J J, et al. The burden of hip osteoarthritis in the United States: epidemiologic and economic considerations[J]. The Journal of the American Academy of Orthopaedic Surgeons, 2013, 21(Suppl 1): S1–S6. doi: 10.5435/jaaos-21-07-s1
|
[5] |
Wang Aiguo, Yau S S, Essner A, et al. A highly crosslinked UHMWPE for CR and PS total knee arthroplasties[J]. The Journal of Arthroplasty, 2008, 23(4): 559–566. doi: 10.1016/j.arth.2007.05.007
|
[6] |
Wang Xiaohong, Zhang Wei, Song Dayong, et al. The impact of variations in input directions according to ISO 14243 on wearing of knee prostheses[J]. Plos One, 2018, 13(10): e0206496. doi: 10.1371/journal.pone.0206496
|
[7] |
Wang Xiaohong, Dong Xiang, Zhu Baozhang, et al. A preclinical method for evaluating the kinematics of knee prostheses[J]. Medical Engineering & Physics, 2019, 66: 84–90. doi: 10.1016/j.medengphy.2019.03.003
|
[8] |
Wang Xiaohong, Li Hu, Dong Xiang, et al. Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses[J]. Clinical Biomechanics, 2019, 63: 34–40. doi: 10.1016/j.clinbiomech.2019.02.008
|
[9] |
Wang Xiaohong, Song Dayong, Dong Xiang, et al. Motion type and knee articular conformity influenced mid-flexion stability of a single radius knee prosthesis[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27(5): 1595–1603. doi: 10.1007/s00167-018-5181-2
|
[10] |
Messer-Hannemann P, Weyer H, Campbell G M, et al. Time-dependent viscoelastic response of acetabular bone and implant seating during dynamic implantation of press-fit cups[J]. Medical Engineering & Physics, 2020, 81: 68–76. doi: 10.1016/j.medengphy.2020.05.012
|
[11] |
Chao J, Lopez V. Failure analysis of a Ti6Al4V cementless HIP prosthesis[J]. Engineering Failure Analysis, 2007, 14(5): 822–830. doi: 10.1016/j.engfailanal.2006.11.003
|
[12] |
Delikanli Y E, Kayacan M C. Design, manufacture, and fatigue analysis of lightweight hip implants[J]. Journal of Applied Biomaterials & Functional Materials, 2019, 17(2): 2280800019836830.
|
[13] |
Romagnoli S, Marullo M, Corbella M, et al. Conical primary cementless stem in revision hip arthroplasty: 94 consecutive implantations at a mean follow-up of 12.7 years[J]. The Journal of Arthroplasty, 2021, 36(3): 1080–1086. doi: 10.1016/j.arth.2020.10.006
|
[14] |
杨抒, 崔文, 张小刚, 等. 国内全髋关节置换磨损测试及数值模拟研究进展[J]. 摩擦学学报, 2021, 41(6): 1004–1018 doi: 10.16078/j.tribology.2020261
Yang Shu, Cui Wen, Zhang Xiaogang, et al. In-vitro wear test and computational wear prediction of total hip replacement in China[J]. Tribology, 2021, 41(6): 1004–1018 doi: 10.16078/j.tribology.2020261
|
[15] |
Zhu Wei, Zhao Yan, Ma Qi, et al. 3D-printed porous titanium changed femoral head repair growth patterns: osteogenesis and vascularisation in porous titanium[J]. Journal of Materials Science:Materials in Medicine, 2017, 28(4): 1–11. doi: 10.1007/s10856-017-5862-2
|
[16] |
Araujo Borges R, Choudhury D, Zou Min. 3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus[J]. Tribology International, 2018, 122: 1–7. doi: 10.1016/j.triboint.2018.01.065
|
[17] |
Berger M B, Jacobs T W, Boyan B D, et al. Hot isostatic pressure treatment of 3D printed Ti6Al4V alters surface modifications and cellular response[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2020, 108(4): 1262–1273. doi: 10.1002/jbm.b.34474
|
[18] |
Peng Xing, Huang Qiyuan, Zhang Yali, et al. Elastic response of anisotropic Gyroid cellular structures under compression: Parametric analysis[J]. Materials & Design, 2021, 205: 109706. doi: 10.1016/j.matdes.2021.109706
|
[19] |
Arøen A, Løken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies[J]. The American Journal of Sports Medicine, 2004, 32(1): 211–215. doi: 10.1177/0363546503259345
|
[20] |
Oungoulian S R, Chang S, Bortz O, et al. Articular cartilage wear characterization with a particle sizing and counting analyzer[J]. Journal of Biomechanical Engineering, 2013, 135(2): 024501. doi: 10.1115/1.4023456
|
[21] |
Lizhang J, Fisher J, Jin Z, et al. The effect of contact stress on cartilage friction, deformation and wear[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2011, 225(5): 461–475. doi: 10.1177/2041303310392626
|
[22] |
Oungoulian S R, Durney K M, Jones B K, et al. Wear and damage of articular cartilage with friction against orthopedic implant materials[J]. Journal of Biomechanics, 2015, 48(10): 1957–1964. doi: 10.1016/j.jbiomech.2015.04.008
|
[23] |
张欣悦, 张德坤, 陈凯, 等. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129–137 doi: 10.11868/j.issn.1001-4381.2017.001520
Zhang Xinyue, Zhang Dekun, Chen Kai, et al. Biological tribological properties between polyetheretherketone and patella cartilage[J]. Journal of Materials Engineering, 2019, 47(2): 129–137 doi: 10.11868/j.issn.1001-4381.2017.001520
|
[24] | |
[25] |
Squire M, Griffin W L, Mason B, et al. Acetabular component deformation with press-fit fixation[J]. The Journal of Arthroplasty, 2006, 21(6): 72–77. doi: 10.1016/j.arth.2006.04.016
|
[26] |
Hothan A, Huber G, Weiss C, et al. Deformation characteristics and eigenfrequencies of press-fit acetabular cups[J]. Clinical Biomechanics, 2011, 26(1): 46–51. doi: 10.1016/j.clinbiomech.2010.08.015
|
[27] |
Springer B D, Habet N A, Griffin W L, et al. Deformation of 1-piece metal acetabular components[J]. The Journal of Arthroplasty, 2012, 27(1): 48–54. doi: 10.1016/j.arth.2011.03.019
|
[28] |
Lin Z M, Meakins S, Morlock M M, et al. Deformation of press-fitted metallic resurfacing cups. Part 1: experimental simulation[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2006, 220(2): 299–309. doi: 10.1243/095441105x69150
|
[29] |
Ong K L, Rundell S, Liepins I, et al. Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation[J]. Journal of Orthopaedic Research, 2009, 27(11): 1467–1472. doi: 10.1002/jor.20918
|
[30] |
Schmidig G, Patel A, Liepins I, et al. The effects of acetabular shell deformation and liner thickness on frictional torque in ultrahigh-molecular-weight polyethylene acetabular bearings[J]. The Journal of Arthroplasty, 2010, 25(4): 644–653. doi: 10.1016/j.arth.2009.03.020
|
[31] |
Meding J B, Small S R, Jones M E, et al. Acetabular cup design influences deformational response in total hip arthroplasty[J]. Clinical Orthopaedics and Related Research®, 2013, 471(2): 403–409. doi: 10.1007/s11999-012-2553-7
|
[32] |
Beckmann N A, Bitsch R G, Bormann T, et al. Titanium acetabular component deformation under cyclic loading[J]. Materials, 2020, 13(1): 52. doi: 10.3390/ma13010052
|
[33] |
Zant N P, Heaton-Adegbile P, Hussell J G, et al. In vitro fatigue failure of cemented acetabular replacements: a hip simulator study[J]. Journal of Biomechanical Engineering, 2008, 130(2): 021019. doi: 10.1115/1.2904466
|
[34] |
Souffrant R, Zietz C, Fritsche A, et al. Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(8): 787–793. doi: 10.1080/10255842.2011.561012
|
[35] |
Fritsche A, Bialek K, Mittelmeier W, et al. Experimental investigations of the insertion and deformation behavior of press-fit and threaded acetabular cups for total hip replacement[J]. Journal of Orthopaedic Science, 2008, 13(3): 240–247. doi: 10.1007/s00776-008-1212-z
|
[36] |
Crosnier E A, Keogh P S, Miles A W. A novel method to assess primary stability of press-fit acetabular cups[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2014, 228(11): 1126–1134. doi: 10.1177/0954411914557714
|
[37] |
Dold P, Pandorf T, Flohr M, et al. Acetabular shell deformation as a function of shell stiffness and bone strength[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2016, 230(4): 259–264. doi: 10.1177/0954411916632792
|
[38] |
van Ladesteijn R, Leslie H, Manning W. A, et al. Mechanical properties of cancellous bone from the acetabulum in relation to acetabular shell fixation and compared with the corresponding femoral head[J]. Medical Engineering & Physics, 2018, 53: 75–81. doi: 10.1016/j.medengphy.2018.01.005
|
[39] |
García-Rey E, García-Cimbrelo E, Cruz-Pardos A. Cup press fit in uncemented THA depends on sex, acetabular shape, and surgical technique[J]. Clinical Orthopaedics and Related Research®, 2012, 470(11): 3014–3023. doi: 10.1007/s11999-012-2381-9
|
[40] | |
[41] | |
[42] |
Markel D, Day J, Siskey R, et al. Deformation of metal-backed acetabular components and the impact of liner thickness in a cadaveric model[J]. International Orthopaedics, 2011, 35(8): 1131–1137. doi: 10.1007/s00264-010-1077-6
|
[43] |
Liu Feng, Chen Zhefeng, Gu Yanqing, et al. Deformation of the Durom acetabular component and its impact on tribology in a cadaveric model-a simulator study[J]. Plos One, 2012, 7(10): e45786. doi: 10.1371/journal.pone.0045786
|
[44] |
Messer-Hannemann P, Campbell G M, Morlock M M. Deformation of acetabular press-fit cups: influence of design and surgical factors[J]. Clinical Biomechanics, 2019, 69: 96–103. doi: 10.1016/j.clinbiomech.2019.07.014
|
[45] | |
[46] | |
[47] |
Baleani M, Fognani R, Toni A. Initial stability of a cementless acetabular cup design: experimental investigation on the effect of adding fins to the rim of the cup[J]. Artificial Organs, 2001, 25(8): 664–669. doi: 10.1046/j.1525-1594.2001.025008664.x
|
[48] |
Small S R, Berend M E, Howard L A, et al. High initial stability in porous titanium acetabular cups: a biomechanical study[J]. The Journal of Arthroplasty, 2013, 28(3): 510–516. doi: 10.1016/j.arth.2012.07.035
|
[49] |
le Cann S, Galland A, Rosa B, et al. Does surface roughness influence the primary stability of acetabular cups? A numerical and experimental biomechanical evaluation[J]. Medical Engineering & Physics, 2014, 36(9): 1185–1190. doi: 10.1016/j.medengphy.2014.07.003
|
[50] |
Klanke J, Partenheimer A, Westermann K. Biomechanical qualities of threaded acetabular cups[J]. International Orthopaedics, 2002, 26(5): 278–282. doi: 10.1007/s00264-002-0368-y
|
[51] |
Manning W A, Pandorf T, Deehan D J, et al. Early shape change behaviour of an uncemented contemporary hip cup: a cadaveric experiment replicating host bone behaviour through temperature control[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2018, 232(9): 843–849. doi: 10.1177/0954411918790776
|
[52] |
https://www.youlai.cn/yyk/article/27913.html[OL]. 2012.
|
[53] | |
[54] |
Thompson Jon C. Netter's concise atlas of orthopaedic anatomy[M]. Translated by Qiu Guixing and Gao Peng. Beijing: People's Medical Publishing House, 2007: 178.
|
[55] |
Eldesouky I, Harrysson O, Marcellin-Little D J, et al. Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem[J]. Journal of Medical Engineering & Technology, 2017, 41(8): 681–691. doi: 10.1080/03091902.2017.1394391
|
[56] |
Čolić K, Sedmak A, Legweel K, et al. Experimental and numerical research of mechanical behaviour of titanium alloy hip implant[J]. Tehnicki Vjesnik - Technical Gazette, 2017, 24(3): 709–713. doi: 10.17559/tv-20160219132016
|
[57] |
de Oliveira B J S, Campanelli L C, Oliveira D P, et al. Surface characterization and fatigue performance of a chemical-etched Ti-6Al-4V femoral stem for cementless hip arthroplasty[J]. Surface and Coatings Technology, 2017, 309: 1126–1134. doi: 10.1016/j.surfcoat.2016.05.011
|
[58] |
Westerman A P, Moor A R, Stone M H, et al. Hip stem fatigue: the implications of increasing patient mass[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2018, 232(5): 520–530. doi: 10.1177/0954411918767200
|
[59] |
华子恺, 张欢欢, 韦庆玥, 等. 人工髋关节股骨柄专用型疲劳测试装置研制[J]. 机械工程学报, 2016, 52(1): 160–164 doi: 10.3901/JME.2016.01.160
Hua Z. , Zhang H., Wei Q., et al. Development a Novel Fatigue Testing Apparatus for Artificial Hip Joint Femur Stem[J]. Journal of Mechanical Engineering, 2016, 52(1): 160–164 doi: 10.3901/JME.2016.01.160
|
[60] |
Lange H E, Bader R, Kluess D. Endurance testing and finite element simulation of a modified hip stem for integration of an energy harvesting system[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2021, 235(9): 985–992. doi: 10.1177/09544119211021675
|
[61] |
NJR Centre. 16th Annual Report National Joint Registry for England, Wales and Northern Ireland and the Isle of Man[R/OL]. NJR Centre. 2019
|
[62] |
梁鹏, 牛舜. 人工关节置换术后假体无菌性松动的早期诊断[J]. 中华关节外科杂志(电子版), 2019, 13(1): 99–104
Liang Peng, Niu Shun. Early diagnosis of artificial joint aseptic loosening after total joint arthroplasty[J]. Chinese Journal of Joint Surgery (Electronic Edition), 2019, 13(1): 99–104
|
[63] |
AOANJRR. 2017 Aunnal Report Australian Orthopaedic Association National Joint Replacement Registry[R/OL]. AOANJRR. 2017.
|
[64] |
NJR Centre. 15th Annual Report National Joint Registry for England, Wales, Northern Ireland and the Isle of Man[R/OL], NJR Centre. 2018.
|
[65] |
毛远青, 朱振安, 汤亭亭, 等. 巨噬细胞对聚乙烯和钛合金颗粒吞噬反应的差异性[J]. 上海交通大学学报(医学版), 2006, 26(5): 476–479
Mao Yuanqing, Zhu Zhenan, Tang Tingting, et al. Different phagocytosis reaction of marcophages on UHMWPE and Ti-6Al-4V particles[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2006, 26(5): 476–479
|
[66] |
王成焘, 靳忠民, 廖广姗, 等. 人工髋关节磨损分析和临床失效诊断推理[J]. 医用生物力学, 2012, 27(4): 361–368 doi: 10.16156/j.1004-7220.2012.04.010
Wang Chengtao, Jin Zhongmin, Liao Guangshan, et al. Wear analysis and diagnostic reasoning on clinical failure of artificial hip joints[J]. Journal of Medical Biomechanics, 2012, 27(4): 361–368 doi: 10.16156/j.1004-7220.2012.04.010
|
[67] |
Elfick A P D, Hall R M, Pinder I M, et al. Wear in retrieved acetabular components: effect of femoral head radius and patient parameters[J]. The Journal of Arthroplasty, 1998, 13(3): 291–295. doi: 10.1016/S0883-5403(98)90174-7
|
[68] |
Tipper J L, Ingham E, Hailey J L, et al. Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrieved Charnley hip prostheses[J]. Journal of Materials Science Materials in Medicine, 2000, 11(2): 117–124. doi: 10.1023/a:1008901302646
|
[69] |
王成焘. 人体生物摩擦学[M]. 北京: 科学出版社, 2008
Wang Chengtao. Human biotribology[M]. Beijing: Science Press, 2008 (in Chinese)
|
[70] |
Hatton A, Nevelos J E, Matthews J B, et al. Effects of clinically relevant alumina ceramic wear particles on TNF-α production by human peripheral blood mononuclear phagocytes[J]. Biomaterials, 2003, 24(7): 1193–1204. doi: 10.1016/S0142-9612(02)00510-0
|
[71] |
Kwon Y M, Rossi D, MacAuliffe J, et al. Risk factors associated with early complications of revision surgery for head-neck taper corrosion in metal-on-polyethylene total hip arthroplasty[J]. The Journal of Arthroplasty, 2018, 33(10): 3231–3237. doi: 10.1016/j.arth.2018.05.046
|
[72] |
Viitala R, Saikko V. Effect of random variation of input and various daily activities on wear in a hip joint simulator[J]. Journal of Biomechanics, 2020, 106: 109831. doi: 10.1016/j.jbiomech.2020.109831
|
[73] |
Vissers M M, Bussmann J B, Verhaar J A, et al. Recovery of physical functioning after total hip arthroplasty: systematic review and meta-analysis of the literature[J]. Physical Therapy, 2011, 91(5): 615–629. doi: 10.2522/ptj.20100201
|
[74] |
Vogel L A, Carotenuto G, Basti J J, et al. Physical activity after total joint arthroplasty[J]. Sports Health, 2011, 3(5): 441–450. doi: 10.1177/1941738111415826
|
[75] |
Zhang Xiaogang, Zhang Yali, Jin Zhongmin. A review of the bio-tribology of medical devices[J]. Friction, 2022, 10(1): 4–30. doi: 10.1007/s40544-021-0512-6
|
[76] |
Shih C H, Chen Wengpin, Tai C L, et al. New concepts—biomechanical studies of a newly designed femoral prosthesis (cervicotrochanter prosthesis)[J]. Clinical Biomechanics, 1997, 12(7–8): 482–490.
|
[77] |
Decking R, Puhl W, Simon U, et al. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems[J]. Clinical Biomechanics, 2006, 21(5): 495–501. doi: 10.1016/j.clinbiomech.2005.12.011
|
[78] |
Arabnejad S, Johnston B, Tanzer M, et al. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty[J]. Journal of Orthopaedic Research, 2017, 35(8): 1774–1783. doi: 10.1002/jor.23445
|
[79] |
Østbyhaug P O, Klaksvik J, Romundstad P, et al. An in vitro study of the strain distribution in human femora with anatomical and customised femoral stems[J]. The Journal of Bone and Joint Surgery British Volume, 2009, 91(5): 676–682. doi: 10.1302/0301-620x.91b5.21749
|
[80] |
Small S R, Hensley S E, Cook P L, et al. Characterization of femoral component initial stability and cortical strain in a reduced stem-length design[J]. The Journal of Arthroplasty, 2017, 32(2): 601–609. doi: 10.1016/j.arth.2016.07.033
|
[81] |
Tatani I, Megas P, Panagopoulos A, et al. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation[J]. Biomedical Engineering Online, 2020, 19(1): 65. doi: 10.1186/s12938-020-00806-y
|
[82] |
Arabnejad Khanoki S, Pasini D. Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material[J]. Journal of Biomechanical Engineering, 2012, 134(3): 031004. doi: 10.1115/1.4006115
|
[83] |
Berzins A, Sumner D R, Andriacchi T P, et al. Stem curvature and load angle influence the initial relative bone-implant motion of cementless femoral stems[J]. Journal of Orthopaedic Research, 1993, 11(5): 758–769. doi: 10.1002/jor.1100110518
|
[84] |
Ferreira L M, Stacpoole R A, Johnson J A, et al. Cementless fixation of radial head implants is affected by implant stem geometry: an in vitro study[J]. Clinical Biomechanics, 2010, 25(5): 422–426. doi: 10.1016/j.clinbiomech.2010.02.001
|
[85] |
Humphreys P K, Orr J F, Bahrani A S. An investigation into the fixation of hip replacements[J]. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 1991, 205(3): 145–153. doi: 10.1243/pime_proc_1991_205_285_02
|
[86] |
Markolf K L, Amstutz H C, Hirschowitz D L. The effect of calcar contact on femoral component micromovement. A mechanical study[J]. The Journal of Bone and Joint Surgery American Volume, 1980, 62(8): 1315–1323. doi: 10.2106/00004623-198062080-00011
|
[87] |
Burke D W, O'Connor D O, Zalenski E B, et al. Micromotion of cemented and uncemented femoral components[J]. The Journal of Bone and Joint Surgery-British Volume, 1991, 73(1): 33–37. doi: 10.1302/0301-620x.73b1.1991771
|
[88] |
Claes L, Fiedler S, Ohnmacht M, et al. Initial stability of fully and partially cemented femoral stems[J]. Clinical Biomechanics, 2000, 15(10): 750–755. doi: 10.1016/S0268-0033(00)00044-9
|
[89] |
Götze C, Steens W, Vieth V, et al. Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis[J]. Clinical Biomechanics, 2002, 17(4): 267–273. doi: 10.1016/S0268-0033(02)00012-8
|
[90] |
Maher S A. Prendergast P J. Discriminating the loosening behaviour of cemented hip prostheses using measurements of migration and inducible displacement[J]. Journal of Biomechanics, 2002, 35(2): 257–265. doi: 10.1016/S0021-9290(01)00181-6
|
[91] |
Liu C, Green S M, Watkins N D, et al. A preliminary hip joint simulator study of the migration of a cemented femoral stem[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2003, 217(2): 127–135. doi: 10.1243/09544110360579349
|
[92] |
Britton J R, Lyons C G, Prendergast P J. Measurement of the relative motion between an implant and bone under cyclic loading[J]. Strain, 2004, 40(4): 193–202. doi: 10.1111/j.1475-1305.2004.00167.x
|
[93] |
Tarala M, Janssen D, Telka A, et al. Experimental versus computational analysis of micromotions at the implant-bone interface[J]. Proceedings of the Institution of Mechanical Engineers Part H, Journal of Engineering in Medicine, 2011, 225(1): 8–15. doi: 10.1243/09544119jeim825
|
[94] |
Tarala M, Janssen D, Verdonschot N. Balancing incompatible endoprosthetic design goals: a combined ingrowth and bone remodeling simulation[J]. Medical Engineering & Physics, 2011, 33(3): 374–380. doi: 10.1016/j.medengphy.2010.11.005
|
[95] |
Heller M O, Bergmann G, Deuretzbacher G, et al. Musculo-skeletal loading conditions at the hip during walking and stair climbing[J]. Journal of Biomechanics, 2001, 34(7): 883–893. doi: 10.1016/S0021-9290(01)00039-2
|
[96] |
万超, 郝智秀, 温诗铸. 骨科植入物的微动摩擦学研究现状及进展[J]. 摩擦学学报, 2012, 31(1): 102–112 doi: 10.1243/09544119jeim825
Wan chao, Hao Zhixiu, Wen Shizhu. Research and prospect on the fretting tribology of the orthopedic implants[J]. Tribology, 2012, 31(1): 102–112 doi: 10.1243/09544119jeim825
|
[97] |
Conroy M J, Pedrono A, Bechtold J E, et al. High-resolution magnetic resonance flow imaging in a model of porous bone-implant interface[J]. Magnetic Resonance Imaging, 2006, 24(5): 657–661. doi: 10.1016/j.mri.2005.11.001
|
[98] |
Gortchacow M. Wettstein M, Pioletti D P, et al. A new technique to measure micromotion distribution around a cementless femoral stem[J]. Journal of Biomechanics, 2011, 44(3): 557–560. doi: 10.1016/j.jbiomech.2010.09.023
|
[99] |
Pu Jian, Zhang Yali, Zhang Xiaogang, et al. Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution[J]. Wear, 2021, 482–483: 203975.
|
[100] |
Pivec R, Meneghini R M, Hozack W J, et al. Modular taper junction corrosion and failure: how to approach a recalled total hip arthroplasty implant[J]. The Journal of Arthroplasty, 2014, 29(1): 1–6. doi: 10.1016/j.arth.2013.08.026
|
[101] |
Preuss R, Haeussler K L, Flohr M, et al. Fretting corrosion and trunnion wear—is it also a problem for sleeved ceramic heads?[J]. Seminars in Arthroplasty, 2012, 23(4): 251–257. doi: 10.1053/j.sart.2013.01.008
|
[102] |
Fallahnezhad K. Farhoudi H, Oskouei R H, et al. Influence of geometry and materials on the axial and torsional strength of the head-neck taper junction in modular hip replacements: a finite element study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60: 118–126. doi: 10.1016/j.jmbbm.2015.12.044
|
[103] |
吴东升, 张亚丽, 张小刚, 等. 人工髋关节组合界面微动腐蚀研究进展[J]. 润滑与密封, 2021, 46(2): 134–142 doi: 10.3969/j.issn.0254-0150.2021.02.019
Wu Dongsheng, Zhang Yali, Zhang Xiaogang, et al. A review on fretting corrosion of modular interfaces of artificial hip joint[J]. Lubrication Engineering, 2021, 46(2): 134–142 doi: 10.3969/j.issn.0254-0150.2021.02.019
|
[104] |
Baxmann M, Jauch S Y, Schilling C, et al. The influence of contact conditions and micromotions on the fretting behavior of modular titanium alloy taper connections[J]. Medical Engineering & Physics, 2013, 35(5): 676–683. doi: 10.1016/j.medengphy.2012.07.013
|
[105] |
Geringer J, Pellier J, Taylor M L, et al. Fretting corrosion with proteins: the role of organic coating on the synergistic mechanisms[J]. Thin Solid Films, 2013, 528: 123–129. doi: 10.1016/j.tsf.2012.09.095
|
[106] |
Swaminathan V, Gilbert J L. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces[J]. Journal of Biomedical Materials Research Part A, 2013, 101(9): 2602–2612. doi: 10.1002/jbm.a.34564
|
[107] |
Royhman D, Patel M, Runa M J, et al. Fretting-corrosion behavior in hip implant modular junctions: the influence of friction energy and pH variation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62: 570–587. doi: 10.1016/j.jmbbm.2016.05.024
|
[108] |
Swaminathan V, Gilbert J L. Fretting corrosion of CoCrMo and Ti6Al4V interfaces[J]. Biomaterials, 2012, 33(22): 5487–5503. doi: 10.1016/j.biomaterials.2012.04.015
|
[109] |
Oladokun A, Pettersson M, Bryant M, et al. Fretting of CoCrMo and Ti6Al4V alloys in modular prostheses[J]. Tribology - Materials, Surfaces & Interfaces, 2015, 9(4): 165–173. doi: 10.1179/1751584X15Y.0000000014
|
[110] |
Tsai C E, Hung J, Hu Y, et al. Improving fretting corrosion resistance of CoCrMo alloy with TiSiN and ZrN coatings for orthopedic applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114: 104233. doi: 10.1016/j.jmbbm.2020.104233
|
[111] |
Donaldson F E, Coburn J C, Siegel K L. Total hip arthroplasty head-neck contact mechanics: a stochastic investigation of key parameters[J]. Journal of Biomechanics, 2014, 47(7): 1634–1641. doi: 10.1016/j.jbiomech.2014.02.035
|
[112] |
Farhoudi H, Fallahnezhad K, Oskouei R. H, et al. A finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: part 1, level walking[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75: 470–476. doi: 10.1016/j.jmbbm.2017.08.012
|
[113] |
Fallahnezhad K, Farhoudi H, Oskouei R H, et al. A finite element study on the mechanical response of the head-neck interface of hip implants under realistic forces and moments of daily activities: part 2[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77: 164–170. doi: 10.1016/j.jmbbm.2017.08.038
|
[114] |
Panagiotidou A, Meswania J, Osman K, et al. The effect of frictional torque and bending moment on corrosion at the taper interface: an in vitro study[J]. The Bone & Joint Journal, 2015, 97-B(4): 463–472. doi: 10.1302/0301-620x.97b4.34800
|
[115] |
Damm P, Dymke J, Ackermann R, et al. Friction in total hip joint prosthesis measured in vivo during walking[J]. Plos One, 2013, 8(11): e78373. doi: 10.1371/journal.pone.0078373
|
[116] |
Bishop N E, Hothan A, Morlock M M. High friction moments in large hard-on-hard hip replacement bearings in conditions of poor lubrication[J]. Journal of Orthopaedic Research, 2013, 31(5): 807–813. doi: 10.1002/jor.22255
|
[117] |
Farhoudi H. Oskouei R H, Jones C F, et al. A novel analytical approach for determining the frictional moments and torques acting on modular femoral components in total hip replacements[J]. Journal of Biomechanics, 2015, 48(6): 976–983. doi: 10.1016/j.jbiomech.2015.02.010
|
[118] |
Bishop N E, Waldow F, Morlock M M. Friction moments of large metal-on-metal hip joint bearings and other modern designs[J]. Medical Engineering & Physics, 2008, 30(8): 1057–1064. doi: 10.1016/j.medengphy.2008.01.001
|
[119] |
Farhoudi H, Oskouei R H, Pasha Zanoosi A A, et al. An analytical calculation of frictional and bending moments at the head-neck interface of hip joint implants during different physiological activities[J]. Materials, 2016, 9(12): E982. doi: 10.3390/ma9120982
|
[120] |
Cai Zhenbing, Gao Shanshan, Zhu Minhao, et al. Tribological behavior of polymethyl methacrylate against different counter-bodies induced by torsional fretting wear[J]. Wear, 2011, 270(3–4): 230–240.
|
[121] |
Wang Songquan, Zhang Dekun, Sun Meng, et al. Torsional fretting corrosion behaviors of the CoCrMo/Ti6Al4V couple[J]. International Journal of Electrochemical Science, 2018, 13: 6414–6425. doi: 10.20964/2018.07.21
|
[122] |
周唯一, 沈明学, 蔡振兵, 等. 钴铬钼合金在血清溶液和干态条件下的扭转复合微动磨损特性[J]. 机械工程材料, 2014, 38(3): 60–65,069
Zhou Weiyi, Shen Mingxue, Cai Zhenbing, et al. Dual-rotary fretting wear characteristics of CoCrMo alloy in serum solution and under dry condition[J]. Materials for Mechanical Engineering, 2014, 38(3): 60–65,069
|
[123] |
Goldberg J R, Gilbert J L, Jacobs J J, et al. A multicenter retrieval study of the taper interfaces of modular hip prostheses[J]. Clinical Orthopaedics and Related Research, 2002, 401: 149–161. doi: 10.1097/00003086-200208000-00018
|