Citation: | ZHANG Liqiang, FENG Yange, LI Xiaojuan, WANG Nannan, WANG Daoai. Triboelectric Behavior at the Friction Interface of Steel and Polytetrafluoroethylene[J]. TRIBOLOGY, 2021, 41(6): 983-994. DOI: 10.16078/j.tribology.2021005 |
[1] |
Nakayama K. Tribocharging and friction in insulators in ambient air[J]. Wear, 1996, 194(1-2): 185–189. doi: 10.1016/0043-1648(95)06840-6
|
[2] |
Chang Y P, Chou H M, Chu L M. Surface voltages of tribo-electrification during dry friction process for the typical four polymer pairs[C]. 2016 International Conference on Applied System Innovation (ICASI), May 26-30, 2016, Okinawa, Japan. 2016, 1-4.
|
[3] |
Burgo T A, Silva C A, Balestrin L B, et al. Friction coefficient dependence on electrostatic tribocharging[J]. Scientific Reports, 2013, 3: 2384. doi: 10.1038/srep02384
|
[4] |
Sayfidinov K, Cezan S D, Baytekin B, et al. Minimizing friction, wear, and energy losses by eliminating contact charging[J]. Science Advances, 2018, 4(11): eaau3808. doi: 10.1126/sciadv.aau3808
|
[5] |
Xu C, Wang A C, Zou H Y, et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification[J]. Advanced Materials, 2018, 30(38): 1803968. doi: 10.1002/adma.201803968
|
[6] |
Xu C, Zi Y L, Wang A C, et al. On the electron-transfer mechanism in the contact-electrification effect[J]. Advanced Materials, 2018, 30(15): 1706790. doi: 10.1002/adma.201706790
|
[7] |
Lin Zonghong, Cheng Gang, Lin Long, et al. Water-solid surface contact electrification and its use for harvesting liquid-wave energy[J]. Angewandte Chemie International Edition, 2013, 52(48): 12545–12549. doi: 10.1002/anie.201307249
|
[8] |
Sosa M D, Ricci M L M, Missoni L L, et al. Liquid-polymer triboelectricity: chemical mechanisms in the contact electrification process[J]. Soft Matter, 2020, 16(30): 7040–7051. doi: 10.1039/d0sm00738b
|
[9] |
Zhang Liqiang, Li Xiaojuan, Zhang Yunlei, et al. Regulation and influence factors of triboelectricity at the solid-liquid interface[J]. Nano Energy, 2020, 78: 105370. doi: 10.1016/j.nanoen.2020.105370
|
[10] |
Wang Z L, Wang A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34–51. doi: 10.1016/j.mattod.2019.05.016
|
[11] |
Lin Shiquan, Xu Liang, Wang A C, et al. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11: 399. doi: 10.1038/s41467-019-14278-9
|
[12] |
Baytekin H T, Baytekin B, Incorvati J T, et al. Material transfer and polarity reversal in contact charging[J]. Angewandte Chemie International Edition, 2012, 51(20): 4843–4847. doi: 10.1002/anie.201200057
|
[13] |
Burgo T A L, Erdemir A. Bipolar tribocharging signal during friction force fluctuations at metal-insulator interfaces[J]. Angewandte Chemie International Edition, 2014, 53(45): 12101–12105. doi: 10.1002/anie.201406541
|
[14] |
Lowell J. The role of material transfer in contact electrification[J]. Journal of Physics D:Applied Physics, 1977, 10(17): L233–L235. doi: 10.1088/0022-3727/10/17/001
|
[15] |
Salaneck W R, Paton A, Clark D T. Double mass transfer during polymer-polymer contacts[J]. Journal of Applied Physics, 1976, 47(1): 144–147. doi: 10.1063/1.322306
|
[16] |
Williams M W. Triboelectric charging in metal-polymer contacts-How to distinguish between electron and material transfer mechanisms[J]. Journal of Electrostatics, 2013, 71(1): 53–54. doi: 10.1016/j.elstat.2012.11.006
|
[17] |
郑有斌, 马韶晨, 冯雁歌, 等. 摩擦起电的界面调控与应用研究[J]. 中国科学:化学, 2018, 48(12): 1514–1530 doi: 10.1360/N032018-00200
Zheng Youbin, Ma Shaochen, Feng Yange, et al. Investigation on the interface control and utilization of triboelectrification[J]. Scientia Sinica Chimica, 2018, 48(12): 1514–1530 doi: 10.1360/N032018-00200
|
[18] |
Haeberle J, Schella A, Sperl M, et al. Double origin of stochastic granular tribocharging[J]. Soft Matter, 2018, 14(24): 4987–4995. doi: 10.1039/c8sm00603b
|
[19] |
Li Shuyao, Nie Jinhui, Shi Yuxiang, et al. Contributions of different functional groups to contact electrification of polymers[J]. Advanced Materials, 2020, 32(25): 2001307. doi: 10.1002/adma.202001307
|
[20] |
Lin Shiquan, Zheng Mingli, Luo Jianjun, et al. Effects of surface functional groups on electron transfer at liquid-solid interfacial contact electrification[J]. ACS Nano, 2020, 14(8): 10733–10741. doi: 10.1021/acsnano.0c06075
|
[21] |
Komatsu T S, Hashimoto M, Miura T, et al. Static electrification by asymmetric rubbing[J]. Applied Surface Science, 2004, 235(1-2): 60–64. doi: 10.1016/j.apsusc.2004.05.133
|
[22] |
Pan Shuaihang, Zhang Zhinan. Fundamental theories and basic principles of triboelectric effect: a review[J]. Friction, 2019, 7(1): 2–17. doi: 10.1007/s40544-018-0217-7
|
[23] |
Feng Yange, Zheng Youbin, Zhang Ga, et al. A new protocol toward high output TENG with polyimide as charge storage layer[J]. Nano Energy, 2017, 38: 467–476. doi: 10.1016/j.nanoen.2017.06.017
|
[24] |
秦红玲, 付阳, 喻叶, 等. 水轮发电机碳刷/集电环无载流与载流干滑动摩擦磨损性能研究[J]. 摩擦学学报, 2019, 39(6): 713–722 doi: 10.16078/j.tribology.2019114
Qin Hongling, Fu Yang, Yu Ye, et al. Tribological performance of carbon brush/collector ring for hydroelectric generator under dry sliding condition with current-carrying and without current-carrying[J]. Tribology, 2019, 39(6): 713–722 doi: 10.16078/j.tribology.2019114
|
[25] |
尹念, 张执南, 张俊彦. 导电滑环Au涂层摩擦磨损行为的分子动力学模拟[J]. 摩擦学学报, 2018, 38(1): 108–114 doi: 10.16078/j.tribology.2018.01.014
Yin Nian, Zhang Zhinan, Zhang Junyan. Molecular dynamics simulation of friction and wear behaviors of Au coating for conductive slip ring[J]. Tribology, 2018, 38(1): 108–114 doi: 10.16078/j.tribology.2018.01.014
|
[26] |
丁奇, 汤金柱, 张松伟, 等. 外加直流电场对DLC/PAO固液复合润滑体系摩擦学行为的影响[J]. 摩擦学学报, 2017, 37(6): 707–716 doi: 10.16078/j.tribology.2017.06.001
Ding Qi, Tang Jinzhu, Zhang Songwei, et al. The tribological behavior of PAO lubricated DLC contacts under DC electric field[J]. Tribology, 2017, 37(6): 707–716 doi: 10.16078/j.tribology.2017.06.001
|
[27] |
谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 39(5): 656–668 doi: 10.16078/j.tribology.2019025
Xie Bohua, Ju Pengfei, Ji Li, et al. Research progress on tribology of electrical contact materials[J]. Tribology, 2019, 39(5): 656–668 doi: 10.16078/j.tribology.2019025
|
[28] |
Xu C, Zhang B, Wang A C, et al. Contact-electrification between two identical materials: curvature effect[J]. ACS Nano, 2019, 13(2): 2034–2041. doi: 10.1021/acsnano.8b08533
|
[29] |
Wang A E, Gil P S, Holonga M, et al. Dependence of triboelectric charging behavior on material microstructure[J]. Physical Review Materials, 2017, 1(3): 035605. doi: 10.1103/physrevmaterials.1.035605
|
[30] |
Sow M, Widenor R, Kumar A, et al. Strain-induced reversal of charge transfer in contact electrification[J]. Angewandte Chemie International Edition, 2012, 51(11): 2695–2697. doi: 10.1002/anie.201107256
|
[31] |
Shaw P E. The electrical charges from like solids[J]. Nature, 1926, 118(2975): 659–660. doi: 10.1038/118659c0
|
[32] |
Jacobs T D, Carpick R W. Nanoscale wear as a stress-assisted chemical reaction[J]. Nature Nanotechnology, 2013, 8(2): 108–112. doi: 10.1038/nnano.2012.255
|
[33] |
亢荣玉, 陈晓阳, 刘旭, 等. 基于发动机主轴轴承异常油膜噪声特征的模拟试验研究[J]. 摩擦学学报, 2020, 40(4): 434–441 doi: 10.16078/j.tribology.2019233
Kang Rongyu, Chen Xiaoyang, Liu Xu, et al. Simulation experiment study on irregular oil film noise characteristics of engine main bearings[J]. Tribology, 2020, 40(4): 434–441 doi: 10.16078/j.tribology.2019233
|
[34] |
张博, 王建华. 基于电容法的温度对舰船汽轮机油分水性影响研究[J]. 摩擦学学报, 2021, 41(1): 137–148 doi: 10.16078/j.tribology.2020034
Zhang Bo, Wang Jianhua. Effect of the temperature based on capacitance method on the oil-water separation performance of ship turbine oil[J]. Tribology, 2021, 41(1): 137–148 doi: 10.16078/j.tribology.2020034
|
[35] |
Puhan D, Wong J S S. Properties of Polyetheretherketone (PEEK) transferred materials in a PEEK-steel contact[J]. Tribology International, 2019, 135: 189–199. doi: 10.1016/j.triboint.2019.02.028
|
[36] |
Zeghloul T, Neagoe M B, Prawatya Y E, et al. Triboelectrical charge generated by frictional sliding contact between polymeric materials[J]. IOP Conference Series:Materials Science and Engineering, 2017, 174: 012002. doi: 10.1088/1757-899x/174/1/012002
|
[37] |
Musa U G, Cezan S D, Baytekin B, et al. The charging events in contact-separation electrification[J]. Scientific Reports, 2018, 8(1): 2472. doi: 10.1038/s41598-018-20413-1
|
[38] |
Puhan D, Nevshupa R, Wong J S S, et al. Transient aspects of plasma luminescence induced by triboelectrification of polymers[J]. Tribology International, 2019, 130: 366–377. doi: 10.1016/j.triboint.2018.09.026
|
[39] |
江泽琦, 方建华, 陈飞, 等. 摩擦电物理和摩擦电化学机理的研究进展[J]. 摩擦学学报, 2017, 37(5): 695–706 doi: 10.16078/j.tribology.2017.05.018
Jiang Zeqi, Fang Jianhua, Chen Fei, et al. Research progress on tribo-electrophysical and tribo-electrochemical mechanisms[J]. Tribology, 2017, 37(5): 695–706 doi: 10.16078/j.tribology.2017.05.018
|
[40] |
黄水泉, 李中亚, 姚伟强, 等. 荷电植物润滑油的摩擦学性能研究[J]. 摩擦学学报, 2014, 34(4): 371–378 doi: 10.16078/j.tribology.2014.04.002
Huang Shuiquan, Li Zhongya, Yao Weiqiang, et al. Tribological performance of charged vegetable lubricants[J]. Tribology, 2014, 34(4): 371–378 doi: 10.16078/j.tribology.2014.04.002
|
[41] |
Qiu Wenzheng, Feng Yange, Luo Ning, et al. Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on Cu foam[J]. Nano Energy, 2020, 70: 104543. doi: 10.1016/j.nanoen.2020.104543
|
[42] |
Li Xiaojuan, Zhang Liqiang, Feng Yange, et al. Solid-liquid triboelectrification control and antistatic materials design based on interface wettability control[J]. Advanced Functional Materials, 2019, 29(35): 1903587. doi: 10.1002/adfm.201903587
|
[43] |
薛群基, 王立平. 类金刚石碳基薄膜材料[M]. 北京: 科学出版社, 2012: 276-277
Xue Qunji, Wang Liping. Diamond-like carbon-based film material[M]. Beijing: Science Press, 2012: 276-277 (in Chinese)
|
[44] |
温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2012: 241-242
Wen Shizhu, Huang Ping. Principles of tribology[M]. Beijing: Tsinghua University Press, 2012: 241-242 (in Chinese)
|