Citation: | WEN Ping, LEI Yongzhen. Preparation and Tribological Properties of Covalent Organic Framework Nanomaterials[J]. TRIBOLOGY, 2022, 42(1): 123-130. DOI: 10.16078/j.tribology.2020285 |
[1] |
蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1): 93–112 doi: 10.16078/j.tribology.2014.01.014
Pu Jibin, Wang Liping, Xue Qunji. Progress of tribology of graphene and graphene-based composite lubricating materials[J]. Tribology, 2014, 34(1): 93–112 doi: 10.16078/j.tribology.2014.01.014
|
[2] |
权鑫, 孙嘉奕, 翁立军. WS2薄膜/空间液体润滑剂复合润滑体系的摩擦学性能研究[J]. 摩擦学学报, 2014, 34(6): 665–672 doi: 10.16078/j.tribology.2014.06.009
Quan Xin, Sun Jiayi, Weng Lijun. Tribological properties of WS2 film/liquid lubricants composite lubrication system[J]. Tribology, 2014, 34(6): 665–672 doi: 10.16078/j.tribology.2014.06.009
|
[3] |
Khac B C T, DelRio F W, Chung K H. Interfacial strength and surface damage characteristics of atomically thin h-BN, MoS2, and graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 9164–9177. doi: 10.1021/acsami.8b00001
|
[4] |
Wu Shuai, He Feng, Xie Guoxin, et al. Black phosphorus: degradation favors lubrication[J]. Nano Letters, 2018, 18(9): 5618–5627. doi: 10.1021/acs.nanolett.8b02092
|
[5] |
Sun Jianlin, Du Shaonan. Application of graphene derivatives and their nanocomposites in tribology and lubrication: a review[J]. RSC Advances, 2019, 9(69): 40642–40661. doi: 10.1039/c9ra05679c
|
[6] |
Xiao Huaping, Liu Shuhai. 2D nanomaterials as lubricant additive: a review[J]. Materials & Design, 2017, 135: 319–332. doi: 10.1016/j.matdes.2017.09.029
|
[7] |
Fayyazbakhsh A, Pirouzfar V. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 891–901. doi: 10.1016/j.rser.2017.03.046
|
[8] |
Liu Heli, Liu Huaiju, Zhu Caichao, et al. Effects of lubrication on gear performance: a review[J]. Mechanism and Machine Theory, 2020, 145: 103701. doi: 10.1016/j.mechmachtheory.2019.103701
|
[9] |
Paul G, Hirani H, Kuila T, et al. Nanolubricants dispersed with graphene and its derivatives: an assessment and review of the tribological performance[J]. Nanoscale, 2019, 11(8): 3458–3483. doi: 10.1039/c8nr08240e
|
[10] |
Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239): 1118–1122. doi: 10.1126/science.1262024
|
[11] |
Hu Chengzhi, Yi Changli, Bai Minli, et al. Molecular dynamics study of the frictional properties of multilayer MoS2[J]. RSC Advances, 2020, 10(30): 17418–17426. doi: 10.1039/d0ra00995d
|
[12] |
Spear J C, Ewers B W, Batteas J D. 2D-nanomaterials for controlling friction and wear at interfaces[J]. Nano Today, 2015, 10(3): 301–314. doi: 10.1016/j.nantod.2015.04.003
|
[13] |
Li Ruiyun, Yang Xing, Wang Yongfu, et al. Graphitic encapsulation and electronic shielding of metal nanoparticles to achieve metal–carbon interfacial superlubricity[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3397–3407. doi: 10.1021/acsami.0c18900
|
[14] |
Kandambeth S, Dey K, Banerjee R. Covalent organic frameworks: chemistry beyond the structure[J]. Journal of the American Chemical Society, 2019, 141(5): 1807–1822. doi: 10.1021/jacs.8b10334
|
[15] |
Li Xinle, Cai Songliang, Sun Bing, et al. Chemically robust covalent organic frameworks: progress and perspective[J]. Matter, 2020, 3(5): 1507–1540. doi: 10.1016/j.matt.2020.09.007
|
[16] |
Li Jie, Jing Xuechun, Li Qingqing, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chemical Society Reviews, 2020, 49(11): 3565–3604. doi: 10.1039/D0CS00017E
|
[17] |
Lohse M S, Bein T. Covalent organic frameworks: structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553. doi: 10.1002/adfm.201705553
|
[18] |
Wang Zhifang, Zhang Sainan, Chen Yao, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708–735. doi: 10.1039/c9cs00827f
|
[19] |
Li Zhuoer, He Ting, Gong Yifan, et al. Covalent organic frameworks: pore design and interface engineering[J]. Accounts of Chemical Research, 2020, 53(8): 1672–1685. doi: 10.1021/acs.accounts.0c00386
|
[20] |
Wen Ping, Lei Yongzhen, Li Wenqian, et al. Synergy between covalent organic frameworks and surfactants to promote water-based lubrication and corrosion resistance[J]. ACS Applied Nano Materials, 2020, 3(2): 1400–1411. doi: 10.1021/acsanm.9b02198
|
[21] |
Wen Ping, Zhang Chaoyang, Yang Zhigang, et al. Triazine-based covalent-organic frameworks: a novel lubricant additive with excellent tribological performances[J]. Tribology International, 2017, 111: 57–65. doi: 10.1016/j.triboint.2017.02.044
|
[22] |
何忠义, 熊丽萍, 曾祥琼, 等. 新型O-N型三嗪衍生物与磷酸三甲酚酯在菜籽油中的摩擦磨损复合效应研究[J]. 摩擦学学报, 2005, 25(5): 398–402 doi: 10.16078/j.tribology.2005.05.004
He Zhongyi, Xiong Liping, Zeng Xiangqiong, et al. Tribological synergy study of a novel O-N style triazine derivative and tricresyl phosphate in rapeseed oil[J]. Tribology, 2005, 25(5): 398–402 doi: 10.16078/j.tribology.2005.05.004
|
[23] |
Xiong Liping, He Zhongyi, Liu Jian, et al. Tribological study of N-containing borate derivatives and their synergistic antioxidation effects with T531[J]. Friction, 2019, 7(5): 417–431. doi: 10.1007/s40544-018-0216-8
|
[24] |
Xiong Liping, He Zhongyi, Han Sheng, et al. Tribological properties study of N-containing heterocyclic imidazoline derivatives as lubricant additives in water-glycol[J]. Tribology International, 2016, 104: 98–108. doi: 10.1016/j.triboint.2016.08.031
|
[25] |
Wang Xuefei, Cheng Jingjing, Yu Huogen, et al. A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance[J]. Dalton Transactions (Cambridge, England, 2017, 46(19): 6417–6424. doi: 10.1039/c7dt00773f
|
[26] |
Wu Xinhu, Liu Junming, Zhao Qin, et al. In situ formed ionic liquids in polyol esters as high performance lubricants for steel/steel contacts at 300 ℃[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2281–2290. doi: 10.1021/acssuschemeng.5b00566
|