ISSN   1004-0595

CN  62-1224/O4

Advanced Search
WANG Heshun, LIU Xiaoming, ZHANG Chening, WANG Zeping, ZHU Weibing. A Comparative Research on the Characteristics of Dry Gas Seal with Double Pointed Grooves[J]. TRIBOLOGY, 2021, 41(6): 974-982. DOI: 10.16078/j.tribology.2020149
Citation: WANG Heshun, LIU Xiaoming, ZHANG Chening, WANG Zeping, ZHU Weibing. A Comparative Research on the Characteristics of Dry Gas Seal with Double Pointed Grooves[J]. TRIBOLOGY, 2021, 41(6): 974-982. DOI: 10.16078/j.tribology.2020149

A Comparative Research on the Characteristics of Dry Gas Seal with Double Pointed Grooves

Funds: The project was supported by the key R&D projects of Science and Technology Department of Sichuan Province (2019YFG0351), the National Natural Science Foundation of China (52079118) and the Key Laboratory of Fluid and Power Machinery, Ministry of Education.
More Information
  • Corresponding author:

    WANG Heshun, E-mail: wangheshun@mail.xhu.edu.cn, Tel: +86-18030802010

  • Received Date: July 16, 2020
  • Revised Date: September 26, 2020
  • Accepted Date: December 06, 2020
  • Available Online: November 28, 2021
  • Published Date: November 27, 2021
  • A new type of Double Pointed Groove (DPG) seal face was proposed, which was composed of two spiral grooves with different groove depth and the same radial length and one circular arc groove. The mathematical model of the DPG and the Dovetail Spiral Groove (DSG) face seal was established, and the numerical calculation was carried out by using the finite difference method. In the small clearance area, the DPG had larger opening force, leakage, stiffness and ratio of stiffness to leakage, and the smaller the clearance, the greater the difference. When h0<3.0 μm, the DPG had larger opening force; when h0<6.0 μm, the film stiffness of the DPG was larger than that of the DSG; when h0<6.8 μm, the DPG had larger stiffness leakage ratio. In the area with a clearance of 3.0~5.0 μm, the stiffness of DPG had a significant increase compared to the DSG with the depth of 10 μm and 8 μm. And the relative change (RC) was about 6% compared with the DSG of 5 μm. When h0<3.0 μm, the leakage of the DPG was higher than that of the DSG, but the leakage value did not exceed the design value, and the basic sealing performance index was qualified. Therefore, the DPG had better comprehensive performance under the condition that the leakage did not exceed the standard.
  • [1]
    江锦波, 陈源, 徐奇超, 等. 干气密封螺旋槽衍生结构演变规律与工况适用性[J]. 摩擦学学报, 2018, 38(3): 264–273 doi: 10.16078/j.tribology.2018.03.003

    Jiang Jinbo, Chen Yuan, Xu Qichao, et al. Evolution rule and working applicability of typical derived structures of spiral groove dry gas seal[J]. Tribology, 2018, 38(3): 264–273 doi: 10.16078/j.tribology.2018.03.003
    [2]
    Muijderman E A. Spiral groove bearings, thesis, 1964[J]. Wear, 1964, 7(6): 560–561. doi: 10.1016/0043-1648(64)90217-0
    [3]
    Gardner JF. Rotary mechanical seal of the gap type: US, US3499653 A[P]. 1970.
    [4]
    Gabriel R P. Fundamentals of spiral groove noncontacting face seals. Lubrication Engineering[J], 1994. 50(3): 215-224.
    [5]
    Ruan Bo. Finite element analysis of the spiral groove gas face seal at the slow speed and the low pressure conditions-slip flow consideration[J]. Tribology Transactions, 2000, 43(3): 411–418. doi: 10.1080/10402000008982357
    [6]
    Zirkelback N. Parametric study of spiral groove gas face seals[J]. Tribology Transactions, 2000, 43(2): 337–343. doi: 10.1080/10402000008982349
    [7]
    Wang Bing, Zhang Huiqiang, Cao Hongjun. Flow dynamics of a spiral-groove dry-gas seal[J]. Chinese Journal of Mechanical Engineering, 2013, 26(1): 78–84. doi: 10.3901/cjme.2013.01.078
    [8]
    Etsion I. Improving tribological performance of mechanical components by laser surface texturing[J]. Tribology Letters, 2004, 17(4): 733–737. doi: 10.1007/s11249-004-8081-1
    [9]
    Qiu Y, Khonsari M M. Investigation of tribological behaviors of annular rings with spiral groove[J]. Tribology International, 2011, 44(12): 1610–1619. doi: 10.1016/j.triboint.2011.05.008
    [10]
    彭旭东, 谭丽丽, 盛颂恩, 等. 带内环槽的螺旋槽干式气体端面密封的静压性能[J]. 摩擦学学报, 2008, 28(6): 507–511 doi: 10.16078/j.tribology.2008.06.008

    Peng Xudong, Tan Lili, Sheng Songen, et al. Static analysis of a spiral-groove dry gas seal with an inner annular groove[J]. Tribology, 2008, 28(6): 507–511 doi: 10.16078/j.tribology.2008.06.008
    [11]
    彭旭东, 黄莉, 白少先, 等. 雁型槽干式气体端面密封性能的数值分析[J]. 化工学报, 2010, 61(12): 3193–3199

    Peng Xudong, Huang Li, Bai Shaoxian, et al. Numerical analysis of sealing performance of dry gas seal with goose-grooves[J]. CIESC Journal, 2010, 61(12): 3193–3199
    [12]
    江锦波, 彭旭东, 白少先, 等. 仿生集束螺旋槽干式气体密封特性的数值分析[J]. 机械工程学报, 2015, 51(15): 20–26 doi: 10.3901/JME.2015.15.020

    Jiang Jinbo, Peng Xudong, Bai Shaoxian, et al. Numerical analysis of characteristics of a bionic cluster spiral groove dry gas seal[J]. Journal of Mechanical Engineering, 2015, 51(15): 20–26 doi: 10.3901/JME.2015.15.020
    [13]
    蒋小文, 顾伯勤. 螺旋槽干气密封端面间气膜特性[J]. 化工学报, 2005, 56(8): 1419–1425 doi: 10.3321/j.issn:0438-1157.2005.08.008

    Jiang Xiaowen, Gu Boqin. Characteristic of gas film between spiral groove dry gas seal faces[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(8): 1419–1425 doi: 10.3321/j.issn:0438-1157.2005.08.008
    [14]
    Hashimoto H, Namba T. Optimization of groove geometry for a thrust air bearing according to various objective functions[J]. Journal of Tribology, 2009, 131(4): 041704. doi: 10.1115/1.3201860
    [15]
    丁雪兴, 贺振泓, 张伟政, 等. 柱面螺旋槽气膜密封微尺度流动场稳态特性分析[J]. 化工学报, 2018, 69(4): 1537–1546 doi: 10.11949/j.issn.0438-1157.20170873

    Ding Xuexing, He Zhenhong, Zhang Weizheng, et al. Parameters analysis of steady micro-scale flow of cylindrical spiral groove dry gas seal[J]. CIESC Journal, 2018, 69(4): 1537–1546 doi: 10.11949/j.issn.0438-1157.20170873
    [16]
    王衍, 孙见君, 胡琼, 等. 基于微尺度造型的干气密封流动有序性数值分析[J]. 摩擦学学报, 2018, 38(6): 673–683 doi: 10.16078/j.tribology.2018098

    Wang Yan, Sun Jianjun, Hu Qiong, et al. Numerical analysis of dry gas seal flow orderliness based on microstructure modeling[J]. Tribology, 2018, 38(6): 673–683 doi: 10.16078/j.tribology.2018098
    [17]
    徐奇超, 江锦波, 陈源, 等. 经典曲线型槽干气密封稳动态密封特性数值分析[J]. 摩擦学学报, 2018, 38(5): 584–594 doi: 10.16078/j.tribology.2018.05.012

    Xu Qichao, Jiang Jinbo, Chen Yuan, et al. Numerical analysis of steady-state and dynamic characteristics of typical molded line groove dry gas seals[J]. Tribology, 2018, 38(5): 584–594 doi: 10.16078/j.tribology.2018.05.012
    [18]
    沈伟, 彭旭东, 江锦波, 等. 惯性效应对超高速倾斜端面气膜密封稳动态特性影响[J]. 摩擦学学报, 2019, 39(4): 452–462 doi: 10.16078/j.tribology.2018165

    Shen Wei, Peng Xudong, Jiang Jinbo, et al. The influence of inertia effect on steady performance and dynamic characteristic of super high-speed tilted gas face seal[J]. Tribology, 2019, 39(4): 452–462 doi: 10.16078/j.tribology.2018165
    [19]
    Fairuz Z M, Jahn I, Abdul-Rahman R. The effect of convection area on the deformation of dry gas seal operating with supercritical CO2[J]. Tribology International, 2019, 137: 349–365. doi: 10.1016/j.triboint.2019.04.043
    [20]
    白少先, 魏佳, 朱得磊, 等. T型槽端面密封气膜热弹流润滑动态稳定性[J]. 摩擦学学报, 2019, 39(2): 131–139 doi: 10.16078/j.tribology.2018073

    Bai Shaoxian, Wei Jia, Zhu Delei, et al. Thermoelastohydrodynamic gas lubrication of T-groove face seals: stability of sealing film[J]. Tribology, 2019, 39(2): 131–139 doi: 10.16078/j.tribology.2018073
    [21]
    Du Qiuwan, Zhang Di. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547–558. doi: 10.1007/s11630-019-1139-z
    [22]
    王泽平, 张车宁, 刘小明. 组合式流体动压槽的非接触机械密封环[P]. CN106812947A

    Wang Zeping, Zhang Chening, Liu Xiaoming. Non-contact mechanical seal ring with combined hydrodynamic grooves[P]. CN106812947A (in Chinese)
    [23]
    左松奇, 王和顺, 张车宁, 等. 新型组合槽端面干气密封特性研究[J]. 润滑与密封, 2020, 45(3): 77–81 doi: 10.3969/j.issn.0254-0150.2020.03.013

    Zuo Songqi, Wang Heshun, Zhang Chening, et al. Study on sealing characteristics of dry gas seal with new combination groove end face[J]. Lubrication Engineering, 2020, 45(3): 77–81 doi: 10.3969/j.issn.0254-0150.2020.03.013
  • Related Articles

    [1]XU Hualin, YANG Haodong, LI Wen, ZHANG Shengguang, HU Wenying, WANG Wenzhong. Numerical Study on Tribological Performance of Stepped Spiral Groove Face Seal[J]. TRIBOLOGY. DOI: 10.16078/j.tribology.2024016
    [2]WANG Yan, XU Hui, XIE Xuefei, KONG Kangjie, HU Qiong, XIE Chenzhuo, CAI Zhangwei. Numerical Study on a New Tesla Valve Structure Dry Gas Seal[J]. TRIBOLOGY, 2022, 42(5): 1024-1035. DOI: 10.16078/j.tribology.2021187
    [3]MENG Xiangkai, JIANG Yingying, ZHAO Wenjing, JIANG Jinbo, PENG Xudong. Fluid Film Dynamic Characteristics of Spiral-Grooved Mechanical Seals with Cavitation Effect[J]. TRIBOLOGY, 2019, 39(2): 171-180. DOI: 10.16078/j.tribology.2018091
    [4]XU Qichao, JIANG Jinbo, CHEN Yuan, PENG Xudong, WANG Yuming. Numerical Analysis of Steady-State and Dynamic Characteristics of Typical Molded Line Groove Dry Gas Seals[J]. TRIBOLOGY, 2018, 38(5): 584-594. DOI: 10.16078/j.tribology.2018.05.012
    [5]JIANG Jinbo, CHEN Yuan, XU Qichao, LI Jiyun, PENG Xudong. Evolution Rule and Working Applicability of Typical Derived Structures of Spiral Groove Dry Gas Seal[J]. TRIBOLOGY, 2018, 38(3): 264-273. DOI: 10.16078/j.tribology.2018.03.003
    [6]CHEN Yuan, PENG Xudong, LI Jiyun, JIANG Jinbo. The Influence of Structure Parameters of Spiral Groove on Dynamic Characteristics of Dry Gas Seal[J]. TRIBOLOGY, 2016, 36(4): 397-405. DOI: 10.16078/j.tribology.2016.04.001
    [7]WANG Yan, SUN Jian-jun, TAO Kai, MA Chen-bo, TU Qiao-an. Numerical Analysis of T-Groove Dry Gas Seal and Groove Optimization[J]. TRIBOLOGY, 2014, 34(4): 420-427.
    [8]PENG Xu-dong, ZHANG Feng-yun, BAI Shao-xian, LI Ji-yun. Bionic Improvement of a Spiral-Grooved Dry Gas Seal at Mid-and-Low Speed[J]. TRIBOLOGY, 2014, 34(1): 43-50.
    [9]Calculation of a Spiral Groove Thrust Bearing of Varying Depth with Boundary Element Method[J]. TRIBOLOGY, 1993, 13(3): 244-251.
    [10]Calculation of a Spiral Groove Thrust Bearing of Constant Depth with Boundary Element Method[J]. TRIBOLOGY, 1993, 13(1): 17-24.
  • Cited by

    Periodical cited type(3)

    1. 郑伟,孙见君,马晨波. 扩压式自泵送流体动压机械密封综合性能研究. 摩擦学学报(中英文). 2024(05): 686-695 .
    2. 陈源,熊聪,彭旭东,李运堂,李孝禄,王冰清,金杰. 不同箔坝位置关系下浮动坝箔片端面气膜密封性能研究. 摩擦学学报. 2023(05): 481-491 . 本站查看
    3. 毕恩哲,李双喜,沙廉翔,刘登宇,陈凯放. 高温动压涨圈密封结构参数多目标优化分析. 化工学报. 2023(06): 2565-2579 .

    Other cited types(5)

Catalog

    Article views (222) PDF downloads (42) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return