Citation: | LI Yunkai, WANG Youqiang, JIAN Guangxiao, LUO Heng. Finite Element Analysis of Tribological Properties of Bionic Water-Lubricated Bearings with Nepenthes Alata Structures[J]. TRIBOLOGY, 2021, 41(3): 344-356. DOI: 10.16078/j.tribology.2020117 |
[1] |
Barwell F T. Effect of surface structure, composition and texture on friction under boundary conditions[J]. Proceedings of the Royal Society of London, 1952, 212(1111): 508–512. doi: 10.1098/rspa.1952.0255
|
[2] |
Wos S, Koszela W, Pawlus P. Comparing tribological effects of various chevron-based surface textures under lubricated unidirectional sliding[J]. Tribology International, 2020, 146: 106205. doi: 10.1016/j.triboint.2020.106205
|
[3] |
Wang Zhiqiang, Fu Qi, Wood R J K, et al. Influence of bionic non-smooth surface texture on tribological characteristics of carbon-fiber-reinforced polyetheretherketone under seawater lubrication[J]. Tribology International, 2020, 144: 106100. doi: 10.1016/j.triboint.2019.106100
|
[4] |
Feldshtein E E, Dyachkova L N. Wear minimization for highly loaded iron-based MMCs due to the formation of spongy-capillary texture on the friction surface[J]. Wear, 2020, 444-445: 203161. doi: 10.1016/j.wear.2019.203161
|
[5] |
Ji Min, Xu Jinyang, Chen Ming, et al. Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing[J]. Ceramics International, 2020, 46(6): 7161–7169. doi: 10.1016/j.ceramint.2019.11.210
|
[6] |
Federle W, Barnes W J, Baumgartner W, et al. Wet but not slippery: Boundary friction in tree frog adhesive toe pads[J]. Journal of the Royal Society, Interface, 2006, 3(10): 689–697. doi: 10.1098/rsif.2006.0135
|
[7] |
Baum M J, Kovalev A E, Michels J, et al. Anisotropic friction of the ventral scales in the snake lampropeltis getula californiae[J]. Tribology Letters, 2014, 54(2): 139–150. doi: 10.1007/s11249-014-0319-y
|
[8] |
刘博, 姜鹏, 李旭朝, 等. 鲨鱼盾鳞肋条结构的减阻仿生研究进展[J]. 材料导报, 2008, 22(7): 14–17, 21 doi: 10.3321/j.issn:1005-023X.2008.07.004
Liu Bo, Jiang Peng, Li Xuzhao, et al. Drag-reduction bionic research on riblet surfaces of shark skin[J]. Materials Review, 2008, 22(7): 14–17, 21 doi: 10.3321/j.issn:1005-023X.2008.07.004
|
[9] |
Pu Xia, Li Guangji, Liu Yunhong. Progress and perspective of studies on biomimetic shark skin drag reduction[J]. ChemBioEng Reviews, 2016, 3(1): 26–40. doi: 10.1002/cben.201500011
|
[10] |
钱善华, 王庆良. 牛膝关节软骨的摩擦行为研究[J]. 摩擦学学报, 2006, 26(5): 397–401 doi: 10.3321/j.issn:1004-0595.2006.05.001
Qian Shanhua, Wang Qingliang. Research on friction behavior from bovine knee articular cartilage[J]. Tribology, 2006, 26(5): 397–401 doi: 10.3321/j.issn:1004-0595.2006.05.001
|
[11] |
Gaume L, Gorb S, Rowe N. Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers[J]. New Phytologist, 2002, 156(3): 479–489. doi: 10.1046/j.1469-8137.2002.00530.x
|
[12] |
Gorb E V, Gorb S N. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment[J]. Beilstein Journal of Nanotechnology, 2011, 2: 302–310. doi: 10.3762/bjnano.2.35
|
[13] |
Bauer U, Bohn H F, Federle W. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2008, 275(1632): 259–265. doi: 10.1098/rspb.2007.1402
|
[14] |
张鹏飞, 张德远, 陈华伟. 猪笼草内表面微观结构及其浸润性研究[J]. 农业机械学报, 2014, 45(1): 341–345 doi: 10.6041/j.issn.1000-1298.2014.01.052
Zhang Pengfei, Zhang Deyuan, Chen Huawei. Microstructure and wettability character of nepenthes’ pitcher surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 341–345 doi: 10.6041/j.issn.1000-1298.2014.01.052
|
[15] |
Hsu C P, Lin Yumin, Chen Poyu. Hierarchical structure and multifunctional surface properties of carnivorous pitcher plants nepenthes[J]. JOM: the journal of the Minerals, Metals & Materials Society, 2015, 67(4): 744–753. doi: 10.1007/s11837-015-1349-0
|
[16] |
郝云飞. 基于猪笼草滑移区表面的工程仿生建模与优化设计[D]. 长春: 长春工业大学, 2016
Hao Yunfei. Mathematical modeling and optimization design based on surface nepenthes slip[D]. Changchun: Changchun University of Technology, 2016 (in Chinese)
|
[17] |
马铭蔚. 双光子聚合加工猪笼草仿生表面疏水性能研究[D]. 长春: 长春工业大学, 2018
Ma Mingwei. Study on the hydrophobic properties of two-photon polymerization process on bio-inspired nepenthes surface[D]. Changchun: Changchun University of Technology, 2018 (in Chinese)
|
[18] |
黄钜斌. 食肉植物猪笼草的减摩机理研究及仿生制备[D]. 长春: 吉林大学, 2018
Huang Jubin. The study on anti-frictional mechanism of carnivorous plant nepenthes alata and bionic fabrication[D]. Changchun: Jilin University, 2018 (in Chinese)
|
[19] |
Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85–89. doi: 10.1038/nature17189
|
[20] |
Chen Huawei, Zhang Liwen, Zhang Yi, et al. Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata[J]. Journal of Materials Chemistry A, 2017, 5(15): 6914–6920. doi: 10.1039/c7ta01609c
|
[21] |
王子阳. 常温和低温自润滑轴承复合材料性能研究与仿生轴承设计研究[D]. 长春: 吉林大学, 2019
Wang Ziyang. Propertie study of self-lubricating composite material at room / low temperature and bionic of design bearing[D]. Changchun: Jilin University, 2019 (in Chinese)
|
[22] |
李婷婷. 仿生硅藻结构的水润滑轴承摩擦学性能研究[D]. 重庆: 重庆大学, 2015
Li Tingting. Study on tribological performances of the bionic water-lubricated bearing based on diatom shell structure[D]. Chongqing: Chongqing University, 2015 (in Chinese)
|
[23] |
刘娇. 水润滑尾轴承橡胶板条表面织构摩擦学性能研究[D]. 武汉: 武汉理工大学, 2016
Liu Jiao. Study on the tribological properties of surface texture of rubber strip on the water lubricated bearing[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese)
|
[24] |
王建. 表面织构赛龙水润滑尾轴承摩擦学性能研究[D]. 武汉: 武汉理工大学, 2017
Wang Jian. Study on the friction performance of surface texture of the thordon water lubricated bearing[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese)
|
[25] |
姜松. 基于仿生的新型水润滑尾轴承材料摩擦学性能研究[D]. 武汉: 武汉理工大学, 2017
Jiang Song. Study on tribological properties of new water–lubricated stern bearing material based on bionic[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese)
|
[26] |
谭欣然, 郭智威, 常铁, 等. 基于仿生结构的PE-UHMW水润滑尾轴承的摩擦性能[J]. 工程塑料应用, 2018, 46(8): 1–6 doi: 10.3969/j.issn.1001-3539.2018.08.001
Tan Xinran, Guo Zhiwei, Chang Tie, et al. Tribological properties of PE-UHMW water lubricated tail bearing based on biomimetic structure[J]. Engineering Plastic Application, 2018, 46(8): 1–6 doi: 10.3969/j.issn.1001-3539.2018.08.001
|
[27] |
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546. doi: 10.1039/tf9444000546
|