ISSN   1004-0595

CN  62-1224/O4

Advanced Search
MENG Fanming, CHENG Zhitao, GONG Jiayu. Solution of Thermal Deformation and Its Effects on High-Speed Point-Contact Elastohydrodynamic Lubrication[J]. TRIBOLOGY, 2021, 41(5): 680-689. DOI: 10.16078/j.tribology.2020087
Citation: MENG Fanming, CHENG Zhitao, GONG Jiayu. Solution of Thermal Deformation and Its Effects on High-Speed Point-Contact Elastohydrodynamic Lubrication[J]. TRIBOLOGY, 2021, 41(5): 680-689. DOI: 10.16078/j.tribology.2020087

Solution of Thermal Deformation and Its Effects on High-Speed Point-Contact Elastohydrodynamic Lubrication

Funds: The project was supported by the National Key R&D Program of China (2018YFB2000604).
More Information
  • Corresponding author:

    MENG Fanming, E-mail: fmmeng@cqu.edu.cn, Tel: +86-13983981735

  • Received Date: May 17, 2020
  • Revised Date: September 12, 2020
  • Accepted Date: September 12, 2020
  • Available Online: September 17, 2021
  • Published Date: September 27, 2021
  • A new method (ITD method) to solve the thermal deformation of contacting surfaces was proposed, and its effect on the non-Newtonian thermal elastohydrodynamic lubrication (TEHL) model for the high-speed point contacts was studied. The film pressure was calculated using the Reynolds equation considering the fluid inertia force, and the temperatures of the lubricant and contacting solids were computed with the chase-after method. At the varied working conditions, effects of the thermal deformation on the TEHL performances were analyzed. To validate the model, the ITD method was verified with the finite element method and discrete summation method, and a central film thickness experiment was conducted to verify the rationality of the TEHL model considering the thermal deformation. It was revealed that the ITD method accurately and quickly evaluated the thermal deformation. With the thermal deformation considered, the film thickness reduced and inclined towards the outlet. Moreover, the central film thickness with the thermal deformation was close to the experimental result.
  • [1]
    Lee R T, Hsu C H, Kuo Wenfeng. Multilevel solution for thermal elastohydrodynamic lubrication of rolling/sliding circular contacts[J]. Tribology International, 1995, 28(8): 541–552. doi: 10.1016/0301-679X(96)85542-3
    [2]
    Guo F, Yang P, Wong P L. On the thermal elastohydrodynamic lubrication in opposite sliding circular contacts[J]. Tribology International, 2001, 34(7): 443–452. doi: 10.1016/S0301-679X(01)00038-X
    [3]
    Kim H J, Ehret P, Dowson D, et al. Thermal elastohydrodynamic analysis of circular contacts Part 2: Non-Newtonian model[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2001, 215(4): 353–362. doi: 10.1243/1350650011543592
    [4]
    Liu Xiaoling, Jiang Ming, Yang Peiran, et al. Non-Newtonian thermal analyses of point EHL contacts using the Eyring model[J]. Journal of Tribology, 2005, 127(1): 70–81. doi: 10.1115/1.1843161
    [5]
    崔伟勤, 赵自强, 张耀光, 等. 牵引模式下球环点接触高速弹流润滑行为机理分析[J]. 摩擦学学报, 2018, 38(6): 619–625 doi: 10.16078/j.tribology.2018055

    Cui Weiqin, Zhao Ziqiang, Zhang Yaoguang, et al. Analysis for mechanism of EHL behavior at high speeds in ball-on-ring contacts in tractive rolling mode[J]. Tribology, 2018, 38(6): 619–625 doi: 10.16078/j.tribology.2018055
    [6]
    Zhang Yaoguang, Wang Wenzhong, Liang He, et al. Layered oil slip model for investigation of film thickness behaviours at high speed conditions[J]. Tribology International, 2019, 131: 137–147. doi: 10.1016/j.triboint.2018.10.035
    [7]
    Liu H C, Zhang B B, Bader N, et al. Influences of solid and lubricant thermal conductivity on traction in an EHL circular contact[J]. Tribology International, 2020, 146: 106059. doi: 10.1016/j.triboint.2019.106059
    [8]
    Wang W Z, Hu Y Z, Wang H, et al. Effect of thermo-elastic deformation on lubricated point contacts[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2006, 220(6): 523–534. doi: 10.1243/13506501jet76
    [9]
    杨俊伟, 于旭东, 王成焘, 等. 考虑活塞热变形的活塞裙部润滑计算分析[J]. 内燃机学报, 2002, 20(4): 365–368 doi: 10.16236/j.cnki.nrjxb.2002.04.015

    Yang Junwei, Yu Xudong, Wang Chengtao, et al. Calculation and analysis of piston skirt lubrication considering the thermal deformation of piston[J]. Transactions of Csice, 2002, 20(4): 365–368 doi: 10.16236/j.cnki.nrjxb.2002.04.015
    [10]
    王庆生, 刘焜. 考虑热变形和弹性变形的活塞二阶运动数值分析[J]. 合肥工业大学学报(自然科学版), 2011, 34(6): 801–804,816

    Wang Qingsheng, Liu Kun. A numerical analysis for secondary motion of piston considering thermal deformation and elastic deformation[J]. Journal of Hefei University of Technology (Natural Science), 2011, 34(6): 801–804,816
    [11]
    余谱, 汪久根, 洪玉芳. 瓦面热变形对多瓦可倾瓦径向滑动轴承弹流润滑的影响[J]. 润滑与密封, 2013, 38(3): 10–13,75

    Yu Pu, Wang Jiugen, Hong Yufang. Effects of pad face thermal distortion on thermal hydrodynamic lubrication performance of multi-tilting-pad journal bearing[J]. Lubrication Engineering, 2013, 38(3): 10–13,75
    [12]
    Liu Shuangbiao, Wang Qian, Harris S J. Surface normal thermoelastic displacement in moving rough contacts[J]. Journal of Tribology, 2003, 125(4): 862–868. doi: 10.1115/1.1574517
    [13]
    路遵友, 吕延军, 张永芳, 等. 考虑热弹性变形的角接触球轴承微观热弹流分析[J]. 摩擦学学报, 2018, 38(3): 299–308 doi: 10.16078/j.tribology.2018.03.007

    Lu Zunyou, Lü Yanjun, Zhang Yongfang, et al. Micro thermal elastohydrodynamic lubrication analysis of angular contact ball bearing considering thermal elastic deformation[J]. Tribology, 2018, 38(3): 299–308 doi: 10.16078/j.tribology.2018.03.007
    [14]
    孟凡明, 张万民. 计入油膜惯性作用椭圆接触弹流润滑性能研究[J]. 摩擦学学报, 2019, 39(5): 585–592 doi: 10.16078/j.tribology.2019016

    Meng Fanming, Zhang Wanmin. Elastohydrodynamic lubrication of elliptical contact considering effect of inertia of lubrication film[J]. Tribology, 2019, 39(5): 585–592 doi: 10.16078/j.tribology.2019016
    [15]
    王文中. 混合润滑的数值模拟和试验研究[D]. 北京: 清华大学, 2003

    Wang Wenzhong. Numerical simulation and experimental study of mixed lubrication[D]. Beijing: Tsinghua University, 2003 (in Chinese)
    [16]
    Venner C H, Lubrecht A A. Multilevel Methods in Lubrication[M]. Amsterdam: Elsevier, 2000.
    [17]
    Kaneta M, Cui Jinlei, Yang Peiran, et al. Influence of thermal conductivity of contact bodies on perturbed film caused by a ridge and groove in point EHL contacts[J]. Tribology International, 2016, 100: 84–98. doi: 10.1016/j.triboint.2015.11.022
    [18]
    杨沛然. 流体润滑数值分析[M]. 北京: 国防工业出版社, 1998

    Yang Peiran. Numerical analysis of fluid lubrication[M]. Beijing: National Defense Industry Press, 1998] (in Chinese)
    [19]
    Kaneta M, Yamada T, Wang J. Micro-elastohydrodynamic lubrication of simple sliding elliptical contacts with sinusoidal roughness[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2008, 222(3): 395–405. doi: 10.1243/13506501jet337
    [20]
    Cui Jinlei, Yang Peiran, Kaneta M, et al. Numerical study on the interaction of transversely oriented ridges in thermal elastohydrodynamic lubrication point contacts using the Eyring shear-thinning model[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2017, 231(1): 93–106. doi: 10.1177/1350650116646943
    [21]
    Wang Xiaopeng, Liu Yuchuan, Zhu Dong. Numerical solution of mixed thermal elastohydrodynamic lubrication in point contacts with three-dimensional surface roughness[J]. Journal of Tribology, 2017, 139(1): 011501. doi: 10.1115/1.4032963

Catalog

    Article views (693) PDF downloads (102) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return