ISSN   1004-0595

CN  62-1224/O4

Advanced Search
FAN Xiangjuan, LI Wensheng, YANG Jun, ZHU Shengyu, CHENG Jun, HE Dongqing. Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range[J]. TRIBOLOGY, 2020, 40(6): 687-696. DOI: 10.16078/j.tribology.2020036
Citation: FAN Xiangjuan, LI Wensheng, YANG Jun, ZHU Shengyu, CHENG Jun, HE Dongqing. Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range[J]. TRIBOLOGY, 2020, 40(6): 687-696. DOI: 10.16078/j.tribology.2020036

Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range

Funds: The project was supported by Gansu Special Commissioner Program for the International Scientific and Technological Cooperation (17JR7WA017),the International Science and Technology Cooperation Projects of National Key R&D Programs (2016YFE0111400) and the National Natural Science Foundation of China (51674130) and Key Research and Development project in Gansu(17YF1WA159)
More Information
  • Corresponding author:

    LI Wensheng, E-mail: liws@lut.edu.cn, Tel: +86-931-2973567, +86-13919250687

  • Received Date: March 06, 2020
  • Revised Date: May 12, 2020
  • Accepted Date: May 25, 2020
  • Available Online: November 16, 2020
  • Published Date: November 27, 2020
  • The Ni3Al based composite coating was prepared by plasma spraying. The influences of 316L and Al2O3 counterpart material on the tribological behaviors of the coating at 25 ℃ to 800 ℃ were investigated. The results showed that under the synergistic action of precipitation of soft metal Ag, brittle-plastic transformation of BaF2/CaF2 and tribo-oxidation, the friction coefficient and wear rate of Ni3Al/316L and Ni3Al/Al2O3 tribo-pairs had the similar trend with the increase of temperature, and the Ni3Al/Al2O3 tribo-pairs had better performance. At 25 ℃, the coating coupled with 316L adhesive wear and abrasive wear occurred, while brittle peeling and abrasive wear occurred when the coating coupled with Al2O3 of high hardness, resulting in rougher coating surface and higher friction coefficient. However, the thermal conductivity of Al2O3 was low, and a large amount of frictional heat generated under the action of high contact stress cannot be dissipated rapidly. The stripped material was stored in the peeling hole or adhered to the worn surface, resulting in a lower wear rate of Ni3Al/Al2O3 friction pair. At 200~600 ℃, the Al2O3 of high hardness had a strong plough effect on the coating, resulting in a higher friction coefficient of Ni3Al/Al2O3 friction pair. Meanwhile, Al2O3 promoted the plastic deformation of the coating, inhibited the fatigue stripping of the material, and made the coating with lower wear rate. At 800 ℃, the high hardness of Al2O3 promoted the formation of a lubrication film with high oxide content on the worn surface, so that the Ni3Al/Al2O3 friction pair had low friction coefficient but high wear rate.
  • [1]
    Sliney H E. Wide temperature spectrum self-lubricating coatings prepared by plasma spraying[J]. Thin Solid Films, 1979, 64: 211–217. doi: 10.1016/0040-6090(79)90511-X
    [2]
    Dellacorte C, Fellenstein J A. The effect of compositional tailoring on the thermal expansion and tribological properties of PS300: a solid lubricant composite coating[J]. Tribology Transactions, 1997, 40: 639–642. doi: 10.1080/10402009708983703
    [3]
    Dellacorte C. The evaluation of a modified chrome oxide based high temperature solid lubricant coating for foil gas bearings[J]. Tribology Transactions, 2000, 43: 257–262. doi: 10.1080/10402000008982337
    [4]
    Stanford M K, Yanke A M, DellaCorte C. Thermal effects on a low Cr modification of PS304 solid lubricant coating[P]. TM-2003-213111, 2004.
    [5]
    Sliney H E, Dellacorte C, Lukaszewicz V. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system[J]. Tribology Transactions, 1995, 38(3): 497–506. doi: 10.1080/10402009508983435
    [6]
    Dellacorte C, Edmonds B. NASA PS400: a new high temperature solid lubricant coating for high temperature wear applications[P]. TM-2010-216774, 2009.
    [7]
    Chen X, Xu J F, Sun Q Q, et al. Characterization of intermetallic bonded TiC composites prepared by mechanically induced self-sustained reaction[J]. Materials and Design, 2016, 89: 102–108. doi: 10.1016/j.matdes.2015.09.158
    [8]
    Li F, Cheng J, Qiao Z H, et al. A nickel-alloy-based high-temperature self-lubricating composite with simultaneously superior lubricity and high strength[J]. Tribology Letters, 2013, 49: 573–577. doi: 10.1007/s11249-012-0101-y
    [9]
    Shi X L, Song S Y, Zhai W Z, et al. Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C[J]. Materials and Design, 2014, 55: 75–84. doi: 10.1016/j.matdes.2013.09.051
    [10]
    Deng W, Li S J, Hou G L, et al. Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts[J]. Ceramics International, 2017, 43: 6976–6986. doi: 10.1016/j.ceramint.2017.02.122
    [11]
    李文生, 范祥娟, 杨军, 等. Ni3Al基高温自润滑复合涂层的制备和摩擦学性能[J]. 摩擦学学报, 2018, 38(6): 626–634 doi: 10.16078/j.tribology.2018033

    Li Wensheng, Fan Xiangjuan, Yang Jun, et al. Preparation and tribological properties of Ni3Al matrix self-lubricating composite coating[J]. Tribology, 2018, 38(6): 626–634 doi: 10.16078/j.tribology.2018033
    [12]
    范祥娟, 李文生, 杨军, 等. 载荷对Ni3Al基自润滑复合涂层摩擦学行为的影响[J]. 摩擦学学报, 2019, 39(4): 419–426 doi: 16078/j.tribology.2018198

    Fan Xiangjuan, Li Wensheng, Yang Jun, et al. Effect of loads on tribological behaviors of Ni3Al matrix self-lubricating composite coating[J]. Tribology, 2019, 39(4): 419–426 doi: 16078/j.tribology.2018198
    [13]
    Yu Z G, Tan H, Wang S, et al. High-temperature tribological behaviors of MoAlB ceramics sliding against Al2O3 and Inconel 718 alloy[J]. Ceramics International, 2020, 46(10): 14713–14720. doi: 10.1016/j.ceramint.2020.02.275
    [14]
    Valefi M, Pathiraj B D, Rooij M D, et al. Influence of counter surface materials on dry sliding performance of CuO/Y-TZP composite at 600 ℃[J]. Journal of the European Ceramic Society, 2012, 32: 4137–4147. doi: 10.1016/j.jeurceramsoc.2012.07.025
    [15]
    Kong L Q, Bi Q L, Niu M Y, et al. ZrO2 (Y2O3)-MoS2-CaF2 self lubricating composite coupled with different ceramics from 20 ℃ to 1000 ℃[J]. Tribology Letters, 2013, 64: 53–62. doi: 10.1016/j.triboint.2013.02.027
    [16]
    孙玉利, 左敦稳, 朱永伟, 等. 不同摩擦偶件对单晶硅摩擦磨损行为影响的对比研究[J]. 硅酸盐学报, 2011, 39(6): 1028–1033 doi: CNKI:SUN:GXYB.0.2011-06-030

    Sun Yuli, Zuo Dunwen, Zhu Yongwei, et al. Comparative study on effects of different counterparts on friction and wear behavior of single crystal silicon[J]. Journal of the Chinese Ceramic Society, 2011, 39(6): 1028–1033 doi: CNKI:SUN:GXYB.0.2011-06-030
    [17]
    Badisch E, Fontalvo G A, Mitterer C. The response of PACVD TiN coatings to tribological tests with different counterparts[J]. Wear, 2004, 256: 95–99. doi: 10.1016/S0043-1648(03)00391-0
    [18]
    段文博, 孙岩桦, 丁春华, 等. 滑动速度对IS304涂层自润滑磨损机理的影响[J]. 摩擦学学报, 2015, 32(2): 147–153 doi: 10.16078/j.tribology.2015.02.004

    Duan Wenbo, Sun Yanhua, Ding Chunhua, et al. The effect of sliding speed on the wear mechanisms of IS304 self-lubricating coating[J]. Tribology, 2015, 32(2): 147–153 doi: 10.16078/j.tribology.2015.02.004
    [19]
    Hiratsuka K, Abe Y, Kawashima S. Effect of in-situ electroless plating on friction and wear of metals[J]. Wear, 2003, 255(7-12): 910–916. doi: 10.1016/S0043-1648(03)00108-X
    [20]
    George E P, Liu C T, Pope D P. Intrinsic ductility and environmental embrittlement of binary Ni3Al[J]. Scripta Metallurgica et Materialia, 1993, 28(7): 857–862. doi: 10.1016/0956-716X(93)90366-Z
    [21]
    米雪, 谢海, 彭金方, 等. 690合金传热管在不同摩擦副条件下的微动磨损性能研究[J]. 摩擦学学报, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199

    Mi Xue, Xie Hai, Peng Jinfang, et al. The effect of mating material on the fretting wear behavior of 690 alloy[J]. Tribology, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199
    [22]
    Benkahoul M, Robin P, Martinu L, et al. Tribological properties of duplex Cr-Si-N coatings on SS410 steel[J]. Surface and Coatings Technology, 2009, 203(8): 934–940. doi: 10.1016/j.surfcoat.2008.07.036
    [23]
    张国涛, 尹延国, 刘振明, 等. 复层铁基粉末冶金材料的摩擦学性能[J]. 材料热处理学报, 2017, 38(1): 7–13 doi: CNKI:SUN:JSCL.0.2017-01-002

    Zhang Guotao, Yin Yanguo, Liu zhenming, et al. Tribological properties of multi-layer iron based powder metallurgy materials[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 7–13 doi: CNKI:SUN:JSCL.0.2017-01-002
    [24]
    俞友军, 周健松, 陈建敏, 等. 激光熔覆NiCr/Cr3C2-Ag-BaF2/CaF2金属基高温自润滑耐磨覆层的组织结构及摩擦学性能[J]. 中国表面工程, 2010, 23(3): 64–73 doi: 10.3969/j.issn.1007-9289.2010.03.014

    Yu Youjun, Zhou Jiansong, Chen Jianmin, et al. Microstructure and tribological behavior of laser cladding NiCr/Cr3C2-Ag-BaF2/CaF2 self-lubrication wear-resistant metal matrix composite coating[J]. China Surface Engineering, 2010, 23(3): 64–73 doi: 10.3969/j.issn.1007-9289.2010.03.014

Catalog

    Article views (1453) PDF downloads (191) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return