ISSN   1004-0595

CN  62-1224/O4

Advanced Search
JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035
Citation: JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035

Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles

Funds: This work was supported by the National Natural Science Foundation of China (51671191, 51771193)
More Information
  • Corresponding author:

    NI Dingrui, E-mail: drni@imr.ac.cn, Tel: +86-24-23971749

  • Received Date: March 05, 2020
  • Revised Date: December 15, 2020
  • Accepted Date: December 15, 2020
  • Available Online: May 05, 2021
  • Published Date: May 27, 2021
  • Spherical graphite particles (Gr) particles and (Gr+SiCp) hybrid reinforced 6092Al composites were prepared via powder metallurgy. The dry sliding friction and wear behaviors of the composites were investigated. The results showed that as the load increased from 10 N to 20 N, the friction coefficient and wear rate of the three composites increased correspondingly; the wear sliding speed increased from 0.5 m/s to 1.0 m/s, and the friction coefficients of 15%Gr/6092Al and (5%Gr+20% SiCp)/6092Al firstly decreased and then increased; while (5%Gr+10% SiCp)/6092Al decreased. When the other conditions were the same, 15%Gr/6092Al composites showed higher wear rate than the hybrid reinforced composites. The results of the analysis of variance showed that the three factors, the effect of the reinforcement phase percentage alone, the interaction between the reinforcement phase percentage and the sliding rate, and the sliding speed alone, have a significant impact on the wear rate and the friction coefficient. With the increase of SiCp content, the hardness of the material increased, and the SiCp acted as a supporting and protective role on the Al matrix. The wear marks on the wear surface became shallow, the phenomenon of delamination exfoliation was obviously alleviated, the debris became fine, and the friction coefficient was more stable, and the wear mechanism changed from delamination wear to abrasive wear.
  • [1]
    高红霞, 陈宝龙, 樊江磊, 等. SiC颗粒增强耐磨铝基复合材料组织及性能研究[J]. 热加工工艺, 2018, 47(8): 93–96

    Gao Hongxia, Chen Baolong, Fan Jianglei, et al. Study on mcrostructure and properties of SiC particle-reinforced wear resistant aluminum matrix composites[J]. Hot Working Technology, 2018, 47(8): 93–96
    [2]
    李书志, 王铁军, 王玲. SiC颗粒增强铝基复合材料的研究进展[J]. 粉末冶金工业, 2017, 27(1): 64–70

    Li Shuzhi, Wang Tiejun, Wang Ling. Research progress of SiC particle reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2017, 27(1): 64–70
    [3]
    卢棋, 何国球, 杨洋, 等. SiC颗粒增强铝基复合材料的摩擦磨损性能研究[J]. 金属功能材料, 2015, 22(2): 41–47

    Lu Qi, He Guoqiu, Yang Yang, et al. Research progress of friction and wear behavior of silicon carbide particle reinforced aluminum matrix composite[J]. Metallic Functional Materials, 2015, 22(2): 41–47
    [4]
    李敏, 王爱琴, 谢敬佩, 等. SiC颗粒增强Al基复合材料的研究现状与进展[J]. 粉末冶金工业, 2015, 25(3): 55–60

    Li Min, Wang Aiqin, Xie Jingpei, et al. The present research situation and progress of SiC particle reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2015, 25(3): 55–60
    [5]
    Singh J, Chauhan A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables[J]. Ceramics International, 2016, 42(1): 56–81. doi: 10.1016/j.ceramint.2015.08.150
    [6]
    Manivannan I, Ranganathan S, Gopalakannan S, et al. Mechanical properties and tribological behavior of Al6061-SiC-Gr self-Lubricating hybrid Nanocomposites[J]. Transactions of the Indian Institute of Metals, 2018, 71(8): 1897–1911. doi: 10.1007/s12666-018-1321-0
    [7]
    Rouhi M, Moazami G M, Ardestani M. Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1169–1183. doi: 10.1016/S1003-6326(19)65025-9
    [8]
    Wang Y Q, Song J I. Dry sliding wear behavior of Al2O3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeeze casting method[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1441–1448. doi: 10.1016/S1003-6326(11)60879-0
    [9]
    Çelik Y H, Kilickap E. Hardness and wear behaviours of Al matrix composites and hybrid composites reinforced with B4C and SiC[J]. Powder Metallurgy and Metal Ceramics, 2019, 57(9-10): 613–622. doi: 10.1007/s11106-019-00023-w
    [10]
    杜军, 刘耀辉, 于思荣, 等. Al2O3纤维及炭纤维增强ZL109混杂复合材料的高温摩擦磨损性能研究[J]. 摩擦学学报, 2003, 23(3): 206–210 doi: 10.3321/j.issn:1004-0595.2003.03.009

    Du Jun, Liu Yaohui, Yu Sirong, et al. The friction and wear properties of Al-12Si hybrid composites reinforced with alumina and carbon short fibers at elevated temperature[J]. Tribology, 2003, 23(3): 206–210 doi: 10.3321/j.issn:1004-0595.2003.03.009
    [11]
    颜建辉, 康蓉, 黄金鑫, 等. MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的摩擦磨损性能[J]. 摩擦学学报, 2019, 39(3): 366–373

    Yan Jianhui, Kang Rong, Huang Jinxin, et al. Friction and wear properties of MoSi2-Mo5Si3-Mo5SiB2 composite against SiC[J]. Tribology, 2019, 39(3): 366–373
    [12]
    杜俊涛, 聂毅, 吕家贺, 等. 中间相炭微球在锂离子电池负极材料的应用进展[J]. 洁净煤技术, 2020, 26(1): 129–138

    Du Juntao, Nie Yi, Lu Jiahe, et al. Application progress on mesocarbon microbeads as anode materials for lithium ion batteries[J]. Clean Coal Technology, 2020, 26(1): 129–138
    [13]
    谢奥林, 尹彩流, 王秀飞, 等. 中间相炭微球-铜基粉末冶金摩擦材料的摩擦学行为[J]. 广西大学学报(自然科学版), 2018, 43(6): 2470–2477

    Xie Aolin, Yin Cailiu, Wang Xiufei, et al. Tribology behavior of mesocarbon microbeads-copper based powder metallurgy friction material[J]. Journal of Guangxi University(Nat Sci Ed), 2018, 43(6): 2470–2477
    [14]
    张有茶, 贾成厂, 贾鹏. 中间相碳微球/氰酸酯树脂复合材料的导电导热性能[J]. 复合材料学报, 2019, 36(3): 602–610

    Zhang Youcha, Jia Chengchang, Jia Peng. Electrically and thermally conductive performance of mesocarbon microbeads/cyanate ester resin composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 602–610
    [15]
    卢德宏, 金燕萍, 吴桢干, 等. Gr和SiC混杂增强铝基复合材料与铸铁的摩擦磨损性能对比[J]. 机械工程材料, 2000, (4): 32–35 doi: 10.3969/j.issn.1000-3738.2000.04.011

    Lu Dehong, Jin Yanping, Wu Zhengan, et al. Comparison of wear performance of silicon carbide and graphite particulates reinforced aluminum materix composite with gray cast iron[J]. Materials for Mechanical Engineering, 2000, (4): 32–35 doi: 10.3969/j.issn.1000-3738.2000.04.011
    [16]
    尧建刚, 李文芳, 杜军. 石墨颗粒含量对(Grp+Al2O3-SiO2f)/ZL109混杂复合材料摩擦磨损性能的影响[J]. 材料科学与工程学报, 2005(5): 491–495 doi: 10.3969/j.issn.1673-2812.2005.05.005

    Yao Jiangang, Li Wenfang, Du Jun. Effect of graphite content on friction and wear properties of aluminosilicate short fiber and graphite particle reinforced Al-12Si hybrid composites[J]. Journal of Materials Science &Engineering, 2005(5): 491–495 doi: 10.3969/j.issn.1673-2812.2005.05.005
    [17]
    朱洪睿, 张绪平, 杨永建, 等. 石墨铝基自润滑材料的制备及性能表征[J]. 润滑与密封, 2012, 37(1): 73–77 doi: 10.3969/j.issn.0254-0150.2012.01.017

    Zhu Hongrui, Zhang Xuping, Yang Yongjian, et al. Processing, properties and application of aluminium-graphite particle composites[J]. Lubrication Engineering, 2012, 37(1): 73–77 doi: 10.3969/j.issn.0254-0150.2012.01.017
    [18]
    Singh N, Mir I U H, Raina A, et al. Synthesis and tribological investigation of Al-SiC based nano hybrid composite[J]. Alexandria Engineering Journal, 2018, 57(3): 1323–1330. doi: 10.1016/j.aej.2017.05.008
    [19]
    Rajaram G, Kumaran S, Srinivasa Rao T, et al. Studies on high temperature wear and its mechanism of Al-Si/graphite composite under dry sliding conditions[J]. Tribology International, 2010, 43(11): 2152–2158. doi: 10.1016/j.triboint.2010.06.004
    [20]
    Stojanović B, Vencl A, Bobić I, et al. Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural network[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(6): 311–324. doi: 10.1007/s40430-018-1237-y
    [21]
    Idrisi A H, Mourad A-H I. Wear performance analysis of aluminum matrix composites and optimization of process parameters using statistical techniques[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5395–5409. doi: 10.1007/s11661-019-05446-z
    [22]
    Madhukar P, Selvaraj N, Rao C S P, et al. Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using taguchi technique[J]. Composites Part B: Engineering, 2019, 175: 107–136.
    [23]
    Ritapure P P, Kharde Y R. SiC contents and pin temperature effect on tribological properties of Al25Zn/SiC composites[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 234–244. doi: 10.1016/j.ijrmhm.2019.04.013
    [24]
    邹小春, 张军, 孙传喜, 等. 机车车轮踏面与钢轨接触的仿真计算及试验研究[J]. 摩擦学学报, 2020, 40(1): 128–134

    Zou Xiaochun, Zhang Jun, Sun Chuanxi, et al. Simulation calculation and experimental research on contact between locomotive wheel tread and rail[J]. Tribology, 2020, 40(1): 128–134
    [25]
    杜明超, 李增亮, 董祥伟, 等. 菱形颗粒冲蚀磨损特性试验及仿真研究[J]. 摩擦学学报, 2018, 38(5): 501–511

    Du Mingchao, Li Zengliang, Dong Xiangwei, et al. Experimental and numerical study on erosion characteristics of rhomboid particles[J]. Tribology, 2018, 38(5): 501–511
    [26]
    Radhika N, Subramaniam R. Wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites using taguchi's techniques[J]. Industrial Lubrication and Tribology, 2013, 65(3): 166–174. doi: 10.1108/00368791311311169
    [27]
    马国楠, 王东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319–1328 doi: 10.11900/0412.1961.2018.00523

    Ma Guonan, Wang dong, Liu Zhenyu, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metallurgica Sinica, 2019, 55(10): 1319–1328 doi: 10.11900/0412.1961.2018.00523
    [28]
    Jinfeng L, Longtao J, Gaohui W, et al. Effect of graphite particle reinforcement on dry sliding wear of SiC/Gr/Al composites[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1894–1898. doi: 10.1016/S1875-5372(10)60059-8
    [29]
    Vencl A, Bobic I, Stojanovic B. Tribological properties of A356 Al-Si alloy composites under dry sliding conditions[J]. Industrial Lubrication and Tribology, 2014, 66(1): 66–74. doi: 10.1108/ILT-06-2011-0047
    [30]
    Guo M L T, Tsao C Y A. Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method[J]. Composites Science and Technology, 2000, 60(1): 65–74. doi: 10.1016/S0266-3538(99)00106-2
    [31]
    Wang Y Q, Afsar A M, Jang J H, et al. Room temperature dry and lubricant wear behaviors of Al2O3f/SiCp/Al hybrid metal matrix composites[J]. Wear, 2010, 268(7-8): 863–870. doi: 10.1016/j.wear.2009.11.010
    [32]
    Mahdavi S, Akhlaghi F. Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites[J]. Journal of Materials Science, 2010, 46(5): 1502–1511.
  • Cited by

    Periodical cited type(5)

    1. 高希瑞,李恒青,韦江,郑宝超,刘洋赈. 烧结温度对车用石墨-TiB_2增强铜基复合材料组织与性能的影响. 材料热处理学报. 2024(05): 32-39 .
    2. 刘园,陈寒韵,崔岩,李纯. SiC/Gr/Al复合材料残余应力的有限元模拟. 热加工工艺. 2023(22): 95-98+103 .
    3. 金延文,李泽琛,孙海霞,宋保永,王君,王东,马宗义. 不同碳化硅和球形石墨含量对混杂增强铝基复合材料力学性能的影响. 精密成形工程. 2022(01): 101-108 .
    4. 杨健,王屹,王智勇,熊耀臣,吴海红. 单点系泊系统用中压电滑环滑动电接触材料的研究进展. 材料开发与应用. 2022(01): 77-83+91 .
    5. 周璇,高义民,路向前,赵四勇. 双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基复合材料制备及力学性能研究. 铸造技术. 2022(06): 417-422 .

    Other cited types(8)

Catalog

    Article views (1352) PDF downloads (119) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return