Citation: | JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035 |
[1] |
高红霞, 陈宝龙, 樊江磊, 等. SiC颗粒增强耐磨铝基复合材料组织及性能研究[J]. 热加工工艺, 2018, 47(8): 93–96
Gao Hongxia, Chen Baolong, Fan Jianglei, et al. Study on mcrostructure and properties of SiC particle-reinforced wear resistant aluminum matrix composites[J]. Hot Working Technology, 2018, 47(8): 93–96
|
[2] |
李书志, 王铁军, 王玲. SiC颗粒增强铝基复合材料的研究进展[J]. 粉末冶金工业, 2017, 27(1): 64–70
Li Shuzhi, Wang Tiejun, Wang Ling. Research progress of SiC particle reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2017, 27(1): 64–70
|
[3] |
卢棋, 何国球, 杨洋, 等. SiC颗粒增强铝基复合材料的摩擦磨损性能研究[J]. 金属功能材料, 2015, 22(2): 41–47
Lu Qi, He Guoqiu, Yang Yang, et al. Research progress of friction and wear behavior of silicon carbide particle reinforced aluminum matrix composite[J]. Metallic Functional Materials, 2015, 22(2): 41–47
|
[4] |
李敏, 王爱琴, 谢敬佩, 等. SiC颗粒增强Al基复合材料的研究现状与进展[J]. 粉末冶金工业, 2015, 25(3): 55–60
Li Min, Wang Aiqin, Xie Jingpei, et al. The present research situation and progress of SiC particle reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2015, 25(3): 55–60
|
[5] |
Singh J, Chauhan A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables[J]. Ceramics International, 2016, 42(1): 56–81. doi: 10.1016/j.ceramint.2015.08.150
|
[6] |
Manivannan I, Ranganathan S, Gopalakannan S, et al. Mechanical properties and tribological behavior of Al6061-SiC-Gr self-Lubricating hybrid Nanocomposites[J]. Transactions of the Indian Institute of Metals, 2018, 71(8): 1897–1911. doi: 10.1007/s12666-018-1321-0
|
[7] |
Rouhi M, Moazami G M, Ardestani M. Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1169–1183. doi: 10.1016/S1003-6326(19)65025-9
|
[8] |
Wang Y Q, Song J I. Dry sliding wear behavior of Al2O3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeeze casting method[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1441–1448. doi: 10.1016/S1003-6326(11)60879-0
|
[9] |
Çelik Y H, Kilickap E. Hardness and wear behaviours of Al matrix composites and hybrid composites reinforced with B4C and SiC[J]. Powder Metallurgy and Metal Ceramics, 2019, 57(9-10): 613–622. doi: 10.1007/s11106-019-00023-w
|
[10] |
杜军, 刘耀辉, 于思荣, 等. Al2O3纤维及炭纤维增强ZL109混杂复合材料的高温摩擦磨损性能研究[J]. 摩擦学学报, 2003, 23(3): 206–210 doi: 10.3321/j.issn:1004-0595.2003.03.009
Du Jun, Liu Yaohui, Yu Sirong, et al. The friction and wear properties of Al-12Si hybrid composites reinforced with alumina and carbon short fibers at elevated temperature[J]. Tribology, 2003, 23(3): 206–210 doi: 10.3321/j.issn:1004-0595.2003.03.009
|
[11] |
颜建辉, 康蓉, 黄金鑫, 等. MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的摩擦磨损性能[J]. 摩擦学学报, 2019, 39(3): 366–373
Yan Jianhui, Kang Rong, Huang Jinxin, et al. Friction and wear properties of MoSi2-Mo5Si3-Mo5SiB2 composite against SiC[J]. Tribology, 2019, 39(3): 366–373
|
[12] |
杜俊涛, 聂毅, 吕家贺, 等. 中间相炭微球在锂离子电池负极材料的应用进展[J]. 洁净煤技术, 2020, 26(1): 129–138
Du Juntao, Nie Yi, Lu Jiahe, et al. Application progress on mesocarbon microbeads as anode materials for lithium ion batteries[J]. Clean Coal Technology, 2020, 26(1): 129–138
|
[13] |
谢奥林, 尹彩流, 王秀飞, 等. 中间相炭微球-铜基粉末冶金摩擦材料的摩擦学行为[J]. 广西大学学报(自然科学版), 2018, 43(6): 2470–2477
Xie Aolin, Yin Cailiu, Wang Xiufei, et al. Tribology behavior of mesocarbon microbeads-copper based powder metallurgy friction material[J]. Journal of Guangxi University(Nat Sci Ed), 2018, 43(6): 2470–2477
|
[14] |
张有茶, 贾成厂, 贾鹏. 中间相碳微球/氰酸酯树脂复合材料的导电导热性能[J]. 复合材料学报, 2019, 36(3): 602–610
Zhang Youcha, Jia Chengchang, Jia Peng. Electrically and thermally conductive performance of mesocarbon microbeads/cyanate ester resin composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 602–610
|
[15] |
卢德宏, 金燕萍, 吴桢干, 等. Gr和SiC混杂增强铝基复合材料与铸铁的摩擦磨损性能对比[J]. 机械工程材料, 2000, (4): 32–35 doi: 10.3969/j.issn.1000-3738.2000.04.011
Lu Dehong, Jin Yanping, Wu Zhengan, et al. Comparison of wear performance of silicon carbide and graphite particulates reinforced aluminum materix composite with gray cast iron[J]. Materials for Mechanical Engineering, 2000, (4): 32–35 doi: 10.3969/j.issn.1000-3738.2000.04.011
|
[16] |
尧建刚, 李文芳, 杜军. 石墨颗粒含量对(Grp+Al2O3-SiO2f)/ZL109混杂复合材料摩擦磨损性能的影响[J]. 材料科学与工程学报, 2005(5): 491–495 doi: 10.3969/j.issn.1673-2812.2005.05.005
Yao Jiangang, Li Wenfang, Du Jun. Effect of graphite content on friction and wear properties of aluminosilicate short fiber and graphite particle reinforced Al-12Si hybrid composites[J]. Journal of Materials Science &Engineering, 2005(5): 491–495 doi: 10.3969/j.issn.1673-2812.2005.05.005
|
[17] |
朱洪睿, 张绪平, 杨永建, 等. 石墨铝基自润滑材料的制备及性能表征[J]. 润滑与密封, 2012, 37(1): 73–77 doi: 10.3969/j.issn.0254-0150.2012.01.017
Zhu Hongrui, Zhang Xuping, Yang Yongjian, et al. Processing, properties and application of aluminium-graphite particle composites[J]. Lubrication Engineering, 2012, 37(1): 73–77 doi: 10.3969/j.issn.0254-0150.2012.01.017
|
[18] |
Singh N, Mir I U H, Raina A, et al. Synthesis and tribological investigation of Al-SiC based nano hybrid composite[J]. Alexandria Engineering Journal, 2018, 57(3): 1323–1330. doi: 10.1016/j.aej.2017.05.008
|
[19] |
Rajaram G, Kumaran S, Srinivasa Rao T, et al. Studies on high temperature wear and its mechanism of Al-Si/graphite composite under dry sliding conditions[J]. Tribology International, 2010, 43(11): 2152–2158. doi: 10.1016/j.triboint.2010.06.004
|
[20] |
Stojanović B, Vencl A, Bobić I, et al. Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural network[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(6): 311–324. doi: 10.1007/s40430-018-1237-y
|
[21] |
Idrisi A H, Mourad A-H I. Wear performance analysis of aluminum matrix composites and optimization of process parameters using statistical techniques[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5395–5409. doi: 10.1007/s11661-019-05446-z
|
[22] |
Madhukar P, Selvaraj N, Rao C S P, et al. Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using taguchi technique[J]. Composites Part B: Engineering, 2019, 175: 107–136.
|
[23] |
Ritapure P P, Kharde Y R. SiC contents and pin temperature effect on tribological properties of Al25Zn/SiC composites[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 234–244. doi: 10.1016/j.ijrmhm.2019.04.013
|
[24] |
邹小春, 张军, 孙传喜, 等. 机车车轮踏面与钢轨接触的仿真计算及试验研究[J]. 摩擦学学报, 2020, 40(1): 128–134
Zou Xiaochun, Zhang Jun, Sun Chuanxi, et al. Simulation calculation and experimental research on contact between locomotive wheel tread and rail[J]. Tribology, 2020, 40(1): 128–134
|
[25] |
杜明超, 李增亮, 董祥伟, 等. 菱形颗粒冲蚀磨损特性试验及仿真研究[J]. 摩擦学学报, 2018, 38(5): 501–511
Du Mingchao, Li Zengliang, Dong Xiangwei, et al. Experimental and numerical study on erosion characteristics of rhomboid particles[J]. Tribology, 2018, 38(5): 501–511
|
[26] |
Radhika N, Subramaniam R. Wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites using taguchi's techniques[J]. Industrial Lubrication and Tribology, 2013, 65(3): 166–174. doi: 10.1108/00368791311311169
|
[27] |
马国楠, 王东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319–1328 doi: 10.11900/0412.1961.2018.00523
Ma Guonan, Wang dong, Liu Zhenyu, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metallurgica Sinica, 2019, 55(10): 1319–1328 doi: 10.11900/0412.1961.2018.00523
|
[28] |
Jinfeng L, Longtao J, Gaohui W, et al. Effect of graphite particle reinforcement on dry sliding wear of SiC/Gr/Al composites[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1894–1898. doi: 10.1016/S1875-5372(10)60059-8
|
[29] |
Vencl A, Bobic I, Stojanovic B. Tribological properties of A356 Al-Si alloy composites under dry sliding conditions[J]. Industrial Lubrication and Tribology, 2014, 66(1): 66–74. doi: 10.1108/ILT-06-2011-0047
|
[30] |
Guo M L T, Tsao C Y A. Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method[J]. Composites Science and Technology, 2000, 60(1): 65–74. doi: 10.1016/S0266-3538(99)00106-2
|
[31] |
Wang Y Q, Afsar A M, Jang J H, et al. Room temperature dry and lubricant wear behaviors of Al2O3f/SiCp/Al hybrid metal matrix composites[J]. Wear, 2010, 268(7-8): 863–870. doi: 10.1016/j.wear.2009.11.010
|
[32] |
Mahdavi S, Akhlaghi F. Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites[J]. Journal of Materials Science, 2010, 46(5): 1502–1511.
|