ISSN   1004-0595

CN  62-1224/O4

Advanced Search
ZHANG Bo, WANG Jianhua. Effect of the Temperature Based on Capacitance Method on the Oil-Water Separation Performance of Ship Turbine Oil[J]. TRIBOLOGY, 2021, 41(1): 137-148. DOI: 10.16078/j.tribology.2020034
Citation: ZHANG Bo, WANG Jianhua. Effect of the Temperature Based on Capacitance Method on the Oil-Water Separation Performance of Ship Turbine Oil[J]. TRIBOLOGY, 2021, 41(1): 137-148. DOI: 10.16078/j.tribology.2020034

Effect of the Temperature Based on Capacitance Method on the Oil-Water Separation Performance of Ship Turbine Oil

More Information
  • Corresponding author:

    ZHANG Bo, E-mail: zb79216@163.com, Tel: 86- 18101363522

  • Received Date: March 02, 2020
  • Revised Date: May 27, 2020
  • Accepted Date: June 23, 2020
  • Available Online: January 12, 2021
  • Published Date: January 27, 2021
  • According to the principle that the difference between the dielectric constant of steam turbine oil and water is large, and the mixed phase acts as a dielectric, the capacitance value will change significantly. Using coaxial cylindrical capacitors as test sensors, eight oil samples that meeted the specifications of the world's mainstream naval ship steam turbine oil products were selected. The capacitance method was used to study the influence of room temperature (18 ~ 24 ℃) and 54 ℃ on the water separation of oil samples. The oil samples with obvious changes in water separation were selected to analyze the microscopic morphology of the oil layer after water separation. The results showed that: 1) At 54 ℃, from the mixing of oil and water to the end of separation, the capacitance value-time curve had a higher degree of coincidence, and the uniform mixing of oil and water had good repeatability, showing better repeatability and stability than room temperature; 2) The water separation rate curve had good repeatability, which verified the reliability of the capacitance method to evaluate the water separation of steam turbine oil, and at the same temperature, the water separation rate and demulsification time were less affected by the water phase distribution and movement; 3) When determining the water content of steam turbine oil by capacitance method, the ambient temperature was 54 ℃; 4) The analysis of the action mechanism showed that temperature was a key indicator that affected the water separation of the steam turbine oil.
  • [1]
    夏延秋, 徐大祎, 冯欣, 等. 基于极限学习机和优化算法的润滑油添加剂种类识别与含量预测[J]. 摩擦学学报, 2020, 40(1): 97–106 doi: 10.16078/j.tribology.2019107

    Xia Yanqiu, Xu Dayi, Feng Xin, et al. Identification and content prediction of lubricating oil additives based on extreme learning machine[J]. Tribology, 2020, 40(1): 97–106 doi: 10.16078/j.tribology.2019107
    [2]
    张博, 李坐社, 王建华. 连续进水时汽轮机油抗乳化性能的评定[J]. 润滑与密封, 2015, 40(8): 117–121 doi: 10.3969/j.issn.0254-0150.2015.08.024

    Zhang Bo, Li Zuoshe, Wang Jianhua. Evaluation of demulsibility on turbine oil under condition of oil-water continuous mixing[J]. Lubrication Engineering, 2015, 40(8): 117–121 doi: 10.3969/j.issn.0254-0150.2015.08.024
    [3]
    王建华, 张博, 许胜利. 海军舰船专用油料综合评定体系建设构想[J]. 润滑油, 2019, 34(2): 41–47

    Wang Jianhua, Zhang Bo, Xu Shengli. Conception of naval warship special oils’ comprehensive characteristics evaluation system construction[J]. Lubricating Oil, 2019, 34(2): 41–47
    [4]
    GB/T 7305-2003. 中华人民共和国国家标准. 石油和合成液水分离性测定法[S]. 北京, 2003

    GB/T 7305-2003. National standard of the people’s republic of China. Standard test method for water separability of petroleum oils and synthetic fluids[S]. Beijing, 2003(in Chinese)
    [5]
    SH/T 0191-1992. 中华人民共和国石油化工行业标准. 润滑油破乳化值测定法[S]. 北京, 1992

    SH/T 0191-1992. People's republic of China petrochemical industry standard. Lubricants break emulsification assay values[S]. Beijing, 1992(in Chinese)
    [6]
    张博, 李坐社, 王建华. 汽轮机油分水性不同评价方法对比研究[J]. 润滑油, 2015, 30(3): 21–28 doi: 10.3969/j.issn.1002-3119.2015.03.006

    Zhang Bo, Li Zuoshe, Wang Jianhua. Contrastive research on oil-water separation characteristics of turbine oil by different evaluation methods[J]. Lubricating Oil, 2015, 30(3): 21–28 doi: 10.3969/j.issn.1002-3119.2015.03.006
    [7]
    唐金伟, 李烨峰, 刘永洛, 等. 基于介电常数法的汽轮机油质量监测[J]. 热力发电, 2015, 44(5): 50–54 doi: 10.3969/j.issn.1002-3364.2015.05.050

    Tang Jinwei, Li Yefeng, Liu Yongluo, et al. Dielectric constant method based montitoring method for turbine oil quality[J]. Thermal Power Generation, 2015, 44(5): 50–54 doi: 10.3969/j.issn.1002-3364.2015.05.050
    [8]
    龚佩, 刘祥萱, 郭磊, 等. 基于介电常数法的润滑油水分快速分析[J]. 润滑与密封, 2011, 36(11): 97–99 doi: 10.3969/j.issn.0254-0150.2011.11.023

    Gong Pei, Liu Xiangxuan, Guo Lei, et al. Rapid analysis of water content in lubricant oil based on the dielectric constant[J]. Lubrication Engineering, 2011, 36(11): 97–99 doi: 10.3969/j.issn.0254-0150.2011.11.023
    [9]
    R Surapol, K Srawut. Low-cost condition monitoring sensor for used oil analysis[J]. Wear, 2005, (259): 1502–1506.
    [10]
    余坚铿, 吴杰长. 基于介电常数的油液质量检测仪[J]. 仪表技术与传感器, 2019, (10): 45–48 doi: 10.3969/j.issn.1002-1841.2019.10.011

    Yu Jiankeng, Wu Jiechang. Study of oil quality monitoring based on dielectric constant[J]. Instrument Technique and Sensor, 2019, (10): 45–48 doi: 10.3969/j.issn.1002-1841.2019.10.011
    [11]
    陈铿, 史永刚. 油品含水率的测量技术[J]. 化学分析计量, 2006, 15(3): 66–68 doi: 10.3969/j.issn.1008-6145.2006.03.027

    Chen Keng, Shi Yonggang. Measurement methods of water content in oil product[J]. Chemical Analysis and Meterage, 2006, 15(3): 66–68 doi: 10.3969/j.issn.1008-6145.2006.03.027
    [12]
    刘焱, 王晓涛. 润滑油含水率检测介电常数式传感器技术研究[J]. 自动化技术与应用, 2019, 38(8): 187–189 doi: 10.3969/j.issn.1003-7241.2019.08.045

    Liu Yan, Wang Xiaotao. Study on the technology of dielectric constant sensor for detecting lubricating oil moisture content[J]. Techniques of Automation and Applications, 2019, 38(8): 187–189 doi: 10.3969/j.issn.1003-7241.2019.08.045
    [13]
    李钰洁, 田洪祥, 韩秋平. 基于电容传感器的润滑油含水率监测研究[J]. 计量与测试技术, 2011, 38(8): 34–35 doi: 10.3969/j.issn.1004-6941.2011.08.018

    Li Yujie, Tian Hongxiang, Han Qiuping. Research on monitoring water content in lubricating oil based on capacitive sensor[J]. Metrology & Measurement Technique, 2011, 38(8): 34–35 doi: 10.3969/j.issn.1004-6941.2011.08.018
    [14]
    毛绵庆, 田洪祥, 龚小龙, 等. 油液水分传感器的分辨率研究[J]. 计量与测试技术, 2016, 43(8): 61–62

    Mao Mianqing, Tian Hongxiang, Gong Xiaolong, et al. Research on resolution of a sensor for measuring water content in lubricating oil[J]. Metrology & Measurement Technique, 2016, 43(8): 61–62
    [15]
    马远佳, 杨永明. 灰色关联分析法对润滑油微量水分测量的改进[J]. 化工自动化及仪表, 2013, 40(4): 460–463 doi: 10.3969/j.issn.1000-3932.2013.04.008

    Ma Yuanjia, Yang Yongming. Improvement on micro moisture measurement of lube oil with grey relative analysis method[J]. Control and Instruments in Chemical Industry, 2013, 40(4): 460–463 doi: 10.3969/j.issn.1000-3932.2013.04.008
    [16]
    王建华, 张博. 介电常数法评定舰用汽轮机油分水性能研究[J]. 中国测试, 2019, 45(9): 130–137 doi: 10.11857/j.issn.1674-5124.2017120038

    Wang Jianhua, Zhang Bo. Investigation on water separation characteristics of ship turbine oils based on dielectric constant method[J]. China Measurement & Test, 2019, 45(9): 130–137 doi: 10.11857/j.issn.1674-5124.2017120038
    [17]
    陈庆国, 梁雯, 宋春辉. 电场强度对原油乳化液破乳脱水的影响[J]. 高电压技术, 2014, 40(1): 173–180

    Chen Qingguo, Liang Wen, Song Chunhui. Effect of electric field strength on crude oil emulsion’s demulsification and dehydration[J]. High Voltage Engineering, 2014, 40(1): 173–180
    [18]
    郭长会. 油中水滴静电聚结特性及电脱水器适用条件研究[D]. 东营: 中国石油大学(华东), 2015

    Guo Changhui. Coalescence characteridtics of droplets in electrical field and the applicability of the electrical coalescencer [D]. China University of Petroleum Doctoral Dissertation, 2015 (in Chinese)
  • Cited by

    Periodical cited type(5)

    1. 高希瑞,李恒青,韦江,郑宝超,刘洋赈. 烧结温度对车用石墨-TiB_2增强铜基复合材料组织与性能的影响. 材料热处理学报. 2024(05): 32-39 .
    2. 刘园,陈寒韵,崔岩,李纯. SiC/Gr/Al复合材料残余应力的有限元模拟. 热加工工艺. 2023(22): 95-98+103 .
    3. 金延文,李泽琛,孙海霞,宋保永,王君,王东,马宗义. 不同碳化硅和球形石墨含量对混杂增强铝基复合材料力学性能的影响. 精密成形工程. 2022(01): 101-108 .
    4. 杨健,王屹,王智勇,熊耀臣,吴海红. 单点系泊系统用中压电滑环滑动电接触材料的研究进展. 材料开发与应用. 2022(01): 77-83+91 .
    5. 周璇,高义民,路向前,赵四勇. 双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基复合材料制备及力学性能研究. 铸造技术. 2022(06): 417-422 .

    Other cited types(8)

Catalog

    Article views (1084) PDF downloads (33) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return