ISSN   1004-0595

CN  62-1224/O4

Advanced Search
TANG Pan, MI Xue, SHEN Pingchuan, BAI Xiaoming, HUANG Qingyu, CHEN Guo, PENG Jinfang, ZHU Minhao. Effect of Displacement on Tangential Fretting Wear Characteristics of 690 Alloy Tube/ 405 Stainless Steel Plate[J]. TRIBOLOGY, 2020, 40(6): 754-761. DOI: 10.16078/j.tribology.2020024
Citation: TANG Pan, MI Xue, SHEN Pingchuan, BAI Xiaoming, HUANG Qingyu, CHEN Guo, PENG Jinfang, ZHU Minhao. Effect of Displacement on Tangential Fretting Wear Characteristics of 690 Alloy Tube/ 405 Stainless Steel Plate[J]. TRIBOLOGY, 2020, 40(6): 754-761. DOI: 10.16078/j.tribology.2020024

Effect of Displacement on Tangential Fretting Wear Characteristics of 690 Alloy Tube/ 405 Stainless Steel Plate

Funds: The Project was supported by the National Natural Science Foundation of China(U1534209, U51305364, 11905215 and 52005469)Science and Technology on Reactor System Design Technology Laboratory
More Information
  • Corresponding author:

    MI Xue, E-mail: xuefeinan@126.com

    ZHU Minhao, E-mail: zhuminhao@swjtu.cn, Tel: +86-28-87600715

  • Received Date: February 10, 2020
  • Revised Date: April 04, 2020
  • Accepted Date: April 08, 2020
  • Available Online: November 08, 2020
  • Published Date: November 27, 2020
  • The tangential fretting wear tests of 690 alloy tube/405 stainless steel were carried by a self-designed fretting wear test rig. The effect of displacement (15 μm, 30 μm, 80 μm, 200 μm) on fretting wear characteristics has been investigated. With the increase of amplitude, fretting wear tests were running in partial slip regime (15 μm), mixed slip regime (30 μm) and gross slip regime (80 μm and 200 μm), respectively. The friction coefficient of partial slip regime was lower associated with slight damage, while the friction coefficient of mixed slip regime and gross slip regime were relatively higher. Additionally, the steady values of mixed slip regime and gross slip regime were almost same. Generally, with the increasing displacement, the width of wear scar and wear volume increased. The main wear mechanisms of partial slip regime were adhesion wear and delamination, while the main wear mechanisms of mixed slip regime was delamination. And the main wear mechanisms of gross slip regime were delamination and abrasive wear.
  • [1]
    朱旻昊, 周仲荣. GCr15轴承钢的复合微动磨损行为研究[J]. 机械工程材料, 2003, 27(2): 10–13 doi: 10.3969/j.issn.1000-3738.2003.02.004

    Zhu Minghao, Zhou Zhongrong. Composite fretting wear mechanism of GCr15 bearing steel[J]. Material of Mechanical Engneering, 2003, 27(2): 10–13 doi: 10.3969/j.issn.1000-3738.2003.02.004
    [2]
    朱旻昊, 李政, 周仲荣. 低碳钢的复合微动磨损特性研究[J]. 材料工程, 2004, (10): 12–15 doi: 10.3969/j.issn.1001-4381.2004.10.003

    Zhu Minghao, Li Zheng, Zhou Zhongrong. Composite fretting wear of low carbon steel[J]. Material Engineering, 2004, (10): 12–15 doi: 10.3969/j.issn.1001-4381.2004.10.003
    [3]
    周仲荣, 罗唯力. 微动摩擦学的发展现状与趋势[J]. 摩擦学学报, 1997, 17(3): 272–280 doi: 10.3321/j.issn:1004-0595.1997.03.015

    Zhou Zhongrong, Luo Weili. Recent development in fretting wear research[J]. Tribology, 1997, 17(3): 272–280 doi: 10.3321/j.issn:1004-0595.1997.03.015
    [4]
    唐辉. 世界核电设备与结构将长期面临的一个问题--微动损伤[J]. 核动力工程, 2000, 21(3): 221–226 doi: 10.3969/j.issn.0258-0926.2000.03.008

    Tang Hui. Fretting damage, One of world-wide difficulties in the filed of nuclear power equipment and structures for a long-term[J]. Nuclear Power Engineering, 2000, 21(3): 221–226 doi: 10.3969/j.issn.0258-0926.2000.03.008
    [5]
    丁训慎. 蒸汽发生器传热管的微振磨损及其防护[J]. 核安全, 2006, (3): 31–6 doi: 10.16432/j.cnki.1672-5360.2006.03.007

    Ding Xunshen. Fretting wear and protection of steam generator tubes[J]. Nuclear Safety, 2006, (3): 31–6 doi: 10.16432/j.cnki.1672-5360.2006.03.007
    [6]
    Lee Y H, Kim H K, Kin H D, et al. A comparative study on the fretting wear of steam generator tubes in korean power plants[J]. Wear, 2003, 255(7−12): 1198–1208. doi: 10.1016/S0043-1648(03)00147-9
    [7]
    Jeong S H, Cho C W, Lee Y Z. Friction and wear of Inconel 690 for steam generator tube in elevated temperature water under fretting condition[J]. Tribology International, 2005, 38(3): 283–288. doi: 10.1016/j.triboint.2004.08.012
    [8]
    Jeung H K, Chung I S, Yoon D H, et al. A study on fretting fatigue characteristics of Inconel 690 at high temperature[J]. Tribology International, 2011, 44(11): 1483–1487. doi: 10.1016/j.triboint.2010.11.006
    [9]
    Park D K, Woo S W, Yoon D H, et al. A study on fretting fatigue life for the Inconel alloy 600 at high temperature[J]. Nuclear Engineering and Design, 2010, 240(10): 2521–2527. doi: 10.1016/j.nucengdes.2010.05.013
    [10]
    Mi X, Wang W X, Xiong X M, et al. Investigation of fretting wear behavior of Inconel 690 alloy in tube/plate contact configuration[J]. Wear, 2015, 328-329: 582–590. doi: 10.1016/j.wear.2015.04.003
    [11]
    Mi X, Cai Z B, Xiong X M, et al. Investigation on fretting wear behavior of 690 alloy in water under various temperatures[J]. Tribology International, 2016, 100: 400–409. doi: 10.1016/j.triboint.2016.05.012
    [12]
    王文秀, 蔡振兵, 钱浩, 等. 不同温度下690合金传热管与抗振条的微动磨损特性[J]. 中国有色金属学报, 2014, (11): 85–91 doi: 10.19476/j.ysxb.1004.0609.2014.11.011

    Wang Wenxiu, Cai Zhenbing, Qian Hao, et al. Fretting wear behavior of alloy 690 heat transfer tubes against anti-vibration strip at different temperatures[J]. The Chinese Journal of Nonferrous Metals, 2014, (11): 85–91 doi: 10.19476/j.ysxb.1004.0609.2014.11.011
    [13]
    米雪, 谢海, 彭金方, 等. 690合金传热管在不同摩擦副条件下的微动磨损性能研究[J]. 摩擦学学报, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199

    Mi Xue, Xie Hai, Peng Jinfang, et al. The effect of mating material on the fretting wear behavior of 690 alloy[J]. Tribology, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199
    [14]
    Guo X, Lai P, Tang L, et al. Fretting wear of alloy 690 tube mated with different materials in high temperature water[J]. Wear, 2018, 400-401: 119–126. doi: 10.1016/j.wear.2018.01.001
    [15]
    辛龙, 李杰, 陆永浩, 等. Inconel690合金高温微动磨损特性研究[J]. 摩擦学学报, 2015, 35(4): 470–476

    Xin Long, Li Jie, Lu Yonghao, et al. Fretting wear properties of Inconel 690 alloy at elevated temperature[J]. Tribology, 2015, 35(4): 470–476
    [16]
    李杰, 陆永浩. 位移幅值对 Inconel600合金微动磨损性能和机制的影响[J]. 北京科技大学学报, 2014, (10): 1328–1334 doi: 10.13374/j.issn1001-053x.2014.10.008

    Li Jie, Lu Yonghao. Displacement amplitude effect on the fretting wear behavior and mechanism of Inconel 600 alloys[J]. Journal of University of Science and Technology, 2014, (10): 1328–1334 doi: 10.13374/j.issn1001-053x.2014.10.008
    [17]
    朱旻昊. 径向与复合微动的运行和损伤机理研究[D]. 成都: 西南交通大学, 2001

    Zhu Minhao. Investigations on the running and damage mechanisms of radial and composite fretting[D]. Chengdu: Southwest Jiaotong University, 2001(in Chinese)
    [18]
    王梦婕, 彭金方, 庄文华, 等. 碳纤维切向微动磨损特性研究[J]. 摩擦学学报, 2019, 39(3): 330–339 doi: 10.16078/j.tribology.2018168

    Wang Mengjie, Peng Jinfang, Zhuang Wenhua, et al. Fretting wear damage characteristics of carbon fiber[J]. Tribology, 2019, 39(3): 330–339 doi: 10.16078/j.tribology.2018168
    [19]
    蔡振兵, 杨莎, 林修洲, 等. 扭动微动条件下含水气氛对氧化行为的影响[J]. 摩擦学学报, 2010, 30(6): 527–531 doi: 10.16078/j.tribology.2010.06.006

    Cai Zhenbing, Yang Sha, Lin Xiuzhou, et al. Oxidation behavior in different humid environments induced by torsional fretting wear[J]. Tribology, 2010, 30(6): 527–531 doi: 10.16078/j.tribology.2010.06.006

Catalog

    Article views (1072) PDF downloads (75) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return