Citation: | CHEN Lin, WU Jian, ZHANG Guangan, SHANG Lunlin, LU Zhibin, XUE Qunji. Probing the Tribological Properties of Diamond-Like Carbon under Methane by Tailoring Sliding Interface[J]. TRIBOLOGY, 2020, 40(2): 150-157. DOI: 10.16078/j.tribology.2019163 |
[1] |
Holmberg Kenneth, Erdemir Ali. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263–284. doi: 10.1007/s40544-017-0183-5
|
[2] |
Lima Ravi Moreno Araújo Pinheiro, De Oliveira, Mário César Albuquerque, et al. Wearable supercapacitors based on graphene nanoplatelets/carbon nanotubes/polypyrrole composites on cotton yarns electrodes[J]. SN Applied Sciences, 2019, (1): 325.
|
[3] |
Cao Xueqian, Shang Lunlin, Liang Yongmin, et al. The tribological performances of the boron carbide films tested under wet Air and wet N2 conditions[J]. Tribology Letters, 2019, 67(3): 70. doi: 10.1007/s11249-019-1184-5
|
[4] |
Cheng Ziwen, Zhang Guangan, Zhang Bozhao, et al. Tuning the electronic structure of hexagonal boron nitride by carbon atom modification: a feasible strategy to reduce sliding friction[J]. Materials Research Express, 2018, 6(3): 036306. doi: 10.1088/2053-1591/aaf705
|
[5] |
Xu Jiao, Duan Zewen, Qiao Li, et al. Nonuniform transitions of heavy-ion irradiated a-C:H films: Structure and antiwear property degradation analysis[J]. Carbon, 2019, 146: 200–209. doi: 10.1016/j.carbon.2019.02.009
|
[6] |
He Dongqing, Li Xia, Pu Jibin, et al. Improving the mechanical and tribological properties of TiB2/a-C nanomultilayers by structural optimization[J]. Ceramics International, 2018, 44(3): 3356–3363. doi: 10.1016/j.ceramint.2017.11.125
|
[7] |
Kuwahara T, Romero P A, Makowski S, et al. Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C[J]. Nature Communications, 2019, 10(1): 151. doi: 10.1038/s41467-018-08042-8
|
[8] |
薛群基, 王立平. 类金刚石碳基薄膜材料[M]. 北京: 科学出版社, 2012
Xue Qunji, Wang Liping. Diamond-like carbon based film material[M]. Beijing: Science Press, 2012(in Chinese)
|
[9] |
Wei Xubing, Zhang Minglan, Shang Lunlin, et al. Enhancement in the corrosive and tribological properties of the inner wall of 6063Al and CI pipes by thick multilayer Si-DLC coatings[J]. Materials Research Express, 2019, 6(8): 085634. doi: 10.1088/2053-1591/ab28f1
|
[10] |
Kong Linggang, Zhang Minglan, Wei Xubing, et al. Observation of uniformity of diamond-like carbon coatings utilizing hollow cathode discharges inside metal tubes[J]. Surface and Coatings Technology, 2019, 375: 123–131. doi: 10.1016/j.surfcoat.2019.07.024
|
[11] |
李安, 李霞, 王云锋, et al. 厚类金刚石碳基薄膜的制备及摩擦与腐蚀性能的表征[J]. 表面技术, 2019, 48(4): 267–275
Li An, Li Xia, Wang Yunfeng, et al. Preparation of thick diamond-like carbon based films and characterization of friction and corrosion properties[J]. Surface Technology, 2019, 48(4): 267–275
|
[12] |
Kuwahara T, Moras G, Moseler M. Friction regimes of water-lubricated diamond (111): Role of interfacial ether groups and tribo-induced aromatic surface reconstructions[J]. Physical Review Letters, 2017, 119(9): 096101. doi: 10.1103/PhysRevLett.119.096101
|
[13] |
Cui Longchen, Lu Zhibin, Wang Liping. Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure[J]. Carbon, 2014, 66: 259–266. doi: 10.1016/j.carbon.2013.08.065
|
[14] |
赵艺蔓, 刘红妹, 吉利, 等. 转移膜的形成对含氢碳膜超低摩擦性能的影响[J]. 摩擦学学报, 2018, 38(1): 115–120
Zhao Yiman, Liu Hongmei, Ji Li, et al. Effect of transfer film forming on super-low friction properties of hydrogenated amorphous carbon films[J]. Tribology, 2018, 38(1): 115–120
|
[15] |
Konicek A R, Grierson D S, Gilbert P U, et al. Origin of ultralow friction and wear in ultrananocrystalline diamond[J]. Physical Review Letters, 2008, 100(23): 235502. doi: 10.1103/PhysRevLett.100.235502
|
[16] |
De Barros Bouchet Maria-Isabel, Zilibotti Giovanna, Matta Christine, et al. Friction of diamond in the presence of water vapor and hydrogen gas coupling gas-phase lubrication and first-principles studies[J]. The Journal of Physical Chemistry C, 2012, 116(12): 6966–6972. doi: 10.1021/jp211322s
|
[17] |
Manimunda P, Al-Azizi A, Kim S H, et al. Shear-induced structural changes and origin of ultralow friction of hydrogenated diamond-like carbon (DLC) in dry environment[J]. ACS Applied Material Interfaces, 2017, 9(19): 16704–16714. doi: 10.1021/acsami.7b03360
|
[18] |
Qi Y, Hector L G. Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces[J]. Physical Review B, 2003, 68(20): 201403. doi: 10.1103/PhysRevB.68.201403
|
[19] |
Cui L, Lu Z, Wang L. Toward low friction in high vacuum for hydrogenated diamondlike carbon by tailoring sliding interface[J]. ACS Applied Material Interfaces, 2013, 5(13): 5889–5893. doi: 10.1021/am401192u
|
[20] |
吴刊选, 刘增家, 郑韶先, 等. 界面调控对类金刚石碳基薄膜/铜摩擦副摩擦学行为的影响[J]. 摩擦学学报, 2019, 39(2): 69–77 doi: 10.16078/j.tribology.2018004
Wu Kanxuan, Liu Zengjia, Zheng Shaoxian, et al. Study on effects of interface tailoring on tribological properties of diamond-like carbon based film/Cu system[J]. Tribology, 2019, 39(2): 69–77 doi: 10.16078/j.tribology.2018004
|
[21] |
Chen Lin, Guo Pengfei, Li Xia, et al. Experimental and model studies about the lubrication of physisorbed isobutane molecules on hydrogenated diamond-like carbon films[J]. Surface and Coatings Technology, 2019, 357: 759–767. doi: 10.1016/j.surfcoat.2018.10.078
|
[22] |
Chen Lin, Wang Jingjing, Shang Lunlin, et al. Gas phase lubrication on diamond-like carbon film: Tribochemical reactions under isobutane condition[J]. Tribology International, 2019, 133: 152–159. doi: 10.1016/j.triboint.2019.01.004
|
[23] |
Chen X, Zhang C, Kato T, et al. Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films[J]. Nature Communications, 2017, 8(1): 1675. doi: 10.1038/s41467-017-01717-8
|
[24] |
Polaki S R, Kumar N, Madapu K, et al. Interpretation of friction and wear in DLC film: role of surface chemistry and test environment[J]. Journal of Physics D: Applied Physics, 2016, 49(44): 445302. doi: 10.1088/0022-3727/49/44/445302
|
[25] |
Xu J G, Kato K. Formation of tribochemical layer of ceramics sliding in water and its role for low friction[J]. Wear, 2000, 245(1-2): 61–75. doi: 10.1016/S0043-1648(00)00466-X
|
[26] |
Gao G T, Mikulski P T, Harrison J A. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions[J]. Journal of American Chemical Soc, 2002, 124(24): 7202–9. doi: 10.1021/ja0178618
|
[27] |
Zhang R H, Wang L P, Lu Z B. Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations[J]. Science Reports, 2015, 5: 9419. doi: 10.1038/srep09419
|
[28] |
Vladimirov A B, Trakhtenberg I S, Rubshtein A P, et al. The effect of substrate and DLC morphology on the tribological properties coating[J]. Diamond and Related Materials, 2000, 9(3-6): 838–842. doi: 10.1016/S0925-9635(00)00221-1
|
[29] |
Guo Pengfei, Geng Zhongrong, Lu Zhibin, et al. Probing the lubrication mechanism of rough diamond-like carbon films against silicon nitride under water[J]. Tribology International, 2018, 128: 248–259. doi: 10.1016/j.triboint.2018.07.030
|
[30] |
Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095–14107. doi: 10.1103/PhysRevB.61.14095
|
[31] |
Ferrari A C, Robertson J. Resonant raman spectroscopy of disordered amorphous and diamondlike carbon[J]. Physical Review B, 2001, 64(7): 075414. doi: 10.1103/PhysRevB.64.075414
|
[32] |
Lugo D C, Silva P C, Ramirez M A, et al. Characterization and tribologic study in high vacuum of hydrogenated DLC films deposited using pulsed DC PECVD system for space applications[J]. Surface and Coatings Technology, 2017, 332: 135–141. doi: 10.1016/j.surfcoat.2017.07.084
|
[33] |
Maeda N, Chen N, Tirrell M, et al. Adhesion and friction mechanisms of polymer-on-polymer surfaces[J]. Science, 2002, 297(5580): 379–82. doi: 10.1126/science.1072378
|