ISSN   1004-0595

CN  62-1224/O4

Advanced Search
QIN Hongling, FU Yang, YU Ye, LIU Yunfan, YANG Chang, ZHAO Xinze, ZHANG Xiaolong. Tribological Performance of Carbon Brush/Collector Ring for Hydroelectric Generator under Dry Sliding Condition with Current-Carrying and without Current-Carrying[J]. TRIBOLOGY, 2019, 39(6): 713-722. DOI: 10.16078/j.tribology.2019114
Citation: QIN Hongling, FU Yang, YU Ye, LIU Yunfan, YANG Chang, ZHAO Xinze, ZHANG Xiaolong. Tribological Performance of Carbon Brush/Collector Ring for Hydroelectric Generator under Dry Sliding Condition with Current-Carrying and without Current-Carrying[J]. TRIBOLOGY, 2019, 39(6): 713-722. DOI: 10.16078/j.tribology.2019114

Tribological Performance of Carbon Brush/Collector Ring for Hydroelectric Generator under Dry Sliding Condition with Current-Carrying and without Current-Carrying

Funds: The project was supported by the Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF19B09)
More Information
  • Corresponding author:

    ZHANG Xiaolong, E-mail: xlzhang12@sina.com, Tel: +86-18371798561

  • Received Date: June 25, 2019
  • Revised Date: August 12, 2019
  • Accepted Date: September 16, 2019
  • Available Online: November 22, 2019
  • Published Date: November 27, 2019
  • In order to reveal the cause of the severe wear, sparking and unstable excitation current of the carbon brush/collector ring on hydroelectric generator, the carbon brush/GCr15 ball pair was used to simulate its contact and friction condition on the Anton Paar Tribometer multi-functional friction and wear tester. Then the effects of load, speed and current density on the tribological properties of the carbon brushes (D172, E468e) under the dry sliding condition with current-carrying and without current-carrying were analyzed. The results show that the tribological performance of the carbon brushes with current-carrying was quite different from that without current-carrying. Without current-carrying, the wear rates of D172 and E468e carbon brushes decreased first and then increased with the increase of load. When the minimum value was reached, a large turning point occurred, so that the change trend of the wear rate of the two carbon brushes was “U” shape. Without current-carrying, the wear rate of the D172 carbon brush was much lower than that of the E468e, while opposite result was obtained for current-carrying condition. Without current-carrying, the wear mechanism of D172 carbon brush was mainly abrasive wear accompanied by mild adhesive wear. With current-carrying, in addition to abrasive wear and adhesive wear, the carbon brush was accompanied by oxidative wear. The wear mechanism of E468e carbon brushes was abrasive wear with and without current-carrying. The friction coefficient of D172 carbon brush increased, while the friction coefficient of E468e carbon brush increased slowly and then gradually decreased. The effect of current on the friction coefficient was obvious for D172 carbon brush but not obvious for E468e carbon brush.
  • [1]
    顾国彪, 阮琳. 蒸发冷却技术在水轮发电机领域的应用和发展[J]. 中国电机工程学报, 2014, 34(29): 5112–5119

    Gu Guobiao, Ruan Lin. Application and development of evaporative cooling technology in the field of hydroelectric generators[J]. Proceedings of the CSEE, 2014, 34(29): 5112–5119
    [2]
    Dejan Poljanec, Mitjan Kalin, Ludvik Kumar. Influence of contact parameters on the tribological behaviour of various graphite/graphite sliding electrical contacts[J]. Wear, 2018, 406-407: 75–83. doi: 10.1016/j.wear.2018.03.022
    [3]
    Feng P, Tu C, Chen Z, et al. The effect of sulfonated graphene oxide on the current-carrying wear characteristics of a resin matrix carbon brush[J]. Carbon, 2017, 124: 729.
    [4]
    Trinh K E, Tsipenyuk A, Varenbrerg M, et al. Wear debris and electrical resistance in textured Sn-coated Cu contacts subjected to fretting[J]. Wear, 2015, 344-345(4): 86–98.
    [5]
    Deeva V, Slobodyan S. Influence of gravity and thermodynamics on the sliding electrical contact[J]. Tribology International, 2017, 105: 299–303. doi: 10.1016/j.triboint.2016.10.004
    [6]
    Vera Deevaa, Stepan Slobodyanb, Martik Martikyana. Physical model of the sliding contact of conductors of the alloy Cu-Zr and Cu-Re under high current density[J]. Materials Oday-Proceedings, 2016, 3(9): 3114–3120. doi: 10.1016/j.matpr.2016.09.027
    [7]
    Wen X, Yuwen F, Ding Z, et al. Electric arc-induced damage on electroless Ag film using ionic liquid as a lubricant under sliding electrical contact[J]. Tribology International, 2019, 135: 269–276. doi: 10.1016/j.triboint.2019.03.019
    [8]
    Kubota Y, Nagasaka S, Miyauchi T, et al. Sliding wear behavior of copper alloy impregnated C/C composites under an electrical current[J]. Wear, 2013, 302(Special SI): 1492–1498.
    [9]
    Yang Z, Zhang Y, Zhao F, et al. Dynamic variation of arc discharge during current-carrying sliding and its effect on directional erosion[J]. Tribology International, 2016, 94: 71–76. doi: 10.1016/j.triboint.2015.03.012
    [10]
    Kalin M, Poljanec D. Influence of the contact parameters and several graphite materials on the tribological behaviour of graphite/copper two-disc electrical contacts[J]. Tribology International, 2018, 126: 192–205. doi: 10.1016/j.triboint.2018.05.024
    [11]
    Kong D J, Guo H Y, Wang W C. Effects of loadings on friction and wear behaviors of cathodic arc ion plating Al TiN coating at high temperature[J]. Tribology Transactions, 2016, 59(4): 604–612. doi: 10.1080/10402004.2015.1094842
    [12]
    吴晓光, 张红波, 尹健, 等. PF/CNTs-Cu复合材料的制备及其载流摩擦磨损机理研究[J]. 摩擦学学报, 2018, 38(3): 334–341 doi: 10.16078/j.tribology.2018.03.011

    Wu Xiaoguang, Zhang Hongbo, Yin Jian, et al. Preparation of PF/CNTs-Cu composite and its current carrying friction and wear mechanism[J]. Journal of Tribology, 2018, 38(3): 334–341 doi: 10.16078/j.tribology.2018.03.011
    [13]
    林修洲, 朱旻昊, 莫继良, 等. 碳/铜载流滑动摩擦过程中摩擦学与电弧行为[J]. 中国有色金属学报, 2011, 21(2): 292–299

    Lin Xiuzhou, Zhu Minghao, Mo Jiliang, et al. Tribological and electric-arc behaviors of carbon/copper pair during sliding friction process with electric current applied[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 292–299
    [14]
    Yang H J, Chen G X, Zhang S D, et al. Effect of the vibration on friction and wear behavior between the carbon strip and copper contact wire pair. Proceedings of the institution of mechanical engineers[J]. Journal of Engineering Tribology, 2012, 226(J8): 722–728.
    [15]
    毛佩林, 岳葆林, 郭瑞, 等. 氮气、空气条件下炭/炭复合材料的摩擦磨损性能[J]. 粉末冶金材料科学与工程, 2012, 17(2): 166–171 doi: 10.3969/j.issn.1673-0224.2012.02.005

    Mao Peilin, Yue Yulin, Guo Rui, et al. Friction and wear properties of carbon/carbon composites under nitrogen and a air conditions[J]. Powder Metallurgy Materials Science and Engineering, 2012, 17(2): 166–171 doi: 10.3969/j.issn.1673-0224.2012.02.005
    [16]
    周文艳, 彭可, 冉丽萍, 等. 电流对Mo2C改性C/C-Cu复合材料载流摩擦磨损性能的影响[J]. 摩擦学学报, 2016, 36(4): 503–509 doi: 10.16078/j.tribology.2016.04.015

    Zhou Wenyan, Peng Ke, Yan Liping, et al. Effect of current on the current-carrying friction and wear properties of Mo2C modified C/C-Cu composites[J]. Tribology, 2016, 36(4): 503–509 doi: 10.16078/j.tribology.2016.04.015
    [17]
    Zhang Y, Sun S, Guo Q, et al. Investigation of transient temperature’s influence on damage of high-speed sliding electrical contact rail surface[C]//Infrared, Millimeter-Wave, and Terahertz Technologies IV. International Society for Optics and Photonics, 2016, 10030: 100302G.
    [18]
    Han H, Du S, Zhang Y, et al. Effect of DC magnetic field on friction and wear properties of 45 steel at different velocities[J]. Tribology Letters, 2016, 64(3): 38. doi: 10.1007/s11249-016-0754-z
  • Related Articles

    [1]WANG Chenglin, ZHANG Yanyan, CHEN Pengfei, ZHOU Taotao, SONG Chenfei, DU Sanming, ZHANG Yongzhen. Effect of Current on Friction and Wear Properties of QBe2.0 Brush Wire[J]. TRIBOLOGY, 2024, 44(10): 1405-1416. DOI: 10.16078/j.tribology.2023191
    [2]QIN Hongling, LI Hongbo, ZHAO Xinze, YI Jingwen, ZHAO Yijun. Calculation and Simulation Verification of Contact Resistance of Carbon Brush/Slip Ring Friction Pair of Hydro Generator Set[J]. TRIBOLOGY, 2024, 44(1): 60-69. DOI: 10.16078/j.tribology.2022138
    [3]ZHAO Bo, DONG Shulin, LI Zihao, ZHANG Baocheng. Multi-Physics Coupling Modeling Method for the Rolling-Spherical Triboelectric Nanogenerator[J]. TRIBOLOGY, 2020, 40(5): 680-686. DOI: 10.16078/j.tribology.2019236
    [4]LIU Lin, YANG Chao, MARTIN Dienwiebel. Effect of Surface Roughness on Wear Rate of Copper-Zinc Alloy under Lubricated Conditions[J]. TRIBOLOGY, 2017, 37(5): 625-630. DOI: 10.16078/j.tribology.2017.05.009
    [5]CUI Jinlei, YANG Ping, LIU Xiaoling, YANG Peiran. A Further Investigation on the Viscosity-Density Relation of Lubricant and a Quantitative Numerical Analysis for the Generalized Newtonian Thermal EHL Problem[J]. TRIBOLOGY, 2016, 36(6): 679-686. DOI: 10.16078/j.tribology.2016.06.003
    [6]ZHANG Hui-jie, SUN Le-min, ZHANG Yong-zhen, SHANGGUAN Bao. The Influence of Environmental Atmosphere on the Tribological Performance of C/C Composites under Electrical Current[J]. TRIBOLOGY, 2015, 35(2): 236-241. DOI: 10.16078/j.tribology.2015.02.016
    [7]LIU Gang-tian, XIAO Qi-dan, LV Zhen-lin, ZHANG Yong-zhen. Current-Carrying Friction and Wear Characteristics of Ti3SiC2 by Reactive Sintering[J]. TRIBOLOGY, 2012, 32(3): 233-237.
    [8]Influence of Electrical Current on the Contact Voltage Drop and Wear Properties of CNTs-Ag-G Composites[J]. TRIBOLOGY, 2006, 26(5): 484-488.
    [9]Analysis of Thermoelastic Hydrodynamic Lubrication Performance of Thrust Bearings for Large Hydrogenerators[J]. TRIBOLOGY, 2001, 21(2): 147-150.
    [10]The Effects of Pad Deformations on Large Tilting pad Journal Bearing for Tubular Turbine Generator Set[J]. TRIBOLOGY, 1999, 19(3): 255-260.
  • Cited by

    Periodical cited type(17)

    1. 刘新龙,周朝伟,王冬云,周新建,胡明捷,关欣,张武略,郑伊亭,高明生,杨文斌,肖乾. 不同电流下的电弧侵蚀对浸铜碳滑板/铬锆铜接触线磨损机理的影响. 摩擦学学报(中英文). 2024(02): 189-199 .
    2. 周涛涛,宋晨飞,钱志源,张燕燕,任雨龙,宋鹏飞,侯庆华,张永振. 铜表面织构密度对铜/碳配副载流摩擦性能的影响. 表面技术. 2024(17): 41-49 .
    3. 王成林,张燕燕,陈鹏飞,周涛涛,宋晨飞,杜三明,张永振. 电流强度对QBe2.0电刷丝摩擦磨损性能的影响. 摩擦学学报(中英文). 2024(10): 1405-1416 .
    4. 邓磊,何志江,殷成凤,王虹,高国强,王娟. 界面氧化对弓网接触副摩擦磨损性能的影响研究. 铁道标准设计. 2024(12): 162-168 .
    5. 何永清,蒋明君,秦光宇,韩波. 水轮发电机顶罩内通风和温升共轭计算分析. 大电机技术. 2024(06): 78-84+94 .
    6. 秦红玲,高梦梦,贾磊,易静雯,赵新泽,徐翔. 离子液体润滑碳刷/集电环载流摩擦学特性及其适配度研究. 润滑与密封. 2023(06): 66-77+94 .
    7. 张维波,王成,陈奔,郭佳豪,金海天. 风机偏航导电滑环温度分布特性研究. 科技与创新. 2023(14): 59-63+66 .
    8. 王宇芸,朱冶诚,张国亮,杨铎,翁义斌,李奇. 载流摩擦润滑材料研究进展. 天津职业技术师范大学学报. 2023(03): 12-17 .
    9. 李庆健,柏通,张津鹏,王达,谢苗,田博. 基于新型装置的碳刷高质量适形研磨机制研究. 中国安全科学学报. 2023(S2): 209-215 .
    10. 李忠凯,徐翔,秦红玲,赵益俊. 水轮发电机主轴轴承油雾收集处理装置流场模拟与仿真. 三峡大学学报(自然科学版). 2022(02): 95-99 .
    11. 吴延好,许金,李想,王君珺. 高速直线运行交流刷轨滑触供电接触特性. 华中科技大学学报(自然科学版). 2022(05): 66-72 .
    12. 李聪慧,张燕燕,曾泽祥,牛凯,宋晨飞,上官宝,张永振. 载流摩擦磨损研究进展. 润滑与密封. 2022(07): 153-167 .
    13. 李宁瑞,康超,徐进,周璋鹏,宋国云,李玉明. 电刷再成型影响因素分析. 现代工业经济和信息化. 2022(06): 332-333 .
    14. 孙杰,邓敏琪,徐方,司金海,陈涛. 水力发电机碳刷温度场分析及其在碳刷温度在线监测应用. 炭素. 2022(04): 38-46 .
    15. 熊震,许春霞,胡瑞,熊乐,MAITI Raman,MCQUADE Catherine. 外加电磁场对金属材料摩擦副摩擦学性能影响的研究进展. 机械工程材料. 2021(03): 1-5+51 .
    16. 毛君,田博,谢苗,李玉岐. 碳刷研磨成形去除模型构建与验证. 工程设计学报. 2021(06): 701-708 .
    17. 张立强,冯雁歌,李小娟,王楠楠,王道爱. 钢-聚四氟乙烯摩擦界面的摩擦起电行为. 摩擦学学报. 2021(06): 983-994 . 本站查看

    Other cited types(17)

Catalog

    Article views (1269) PDF downloads (82) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return