ISSN   1004-0595

CN  62-1224/O4

Advanced Search
XU Huiyan, LI Zhenhua, TENG Baoren, YANG Rui, LI Huaiyang, REN Bo. Tribological Properties of Copper Matrix Composite with Lattice Reinforcement[J]. TRIBOLOGY, 2019, 39(5): 611-618. DOI: 10.16078/j.tribology.2019068
Citation: XU Huiyan, LI Zhenhua, TENG Baoren, YANG Rui, LI Huaiyang, REN Bo. Tribological Properties of Copper Matrix Composite with Lattice Reinforcement[J]. TRIBOLOGY, 2019, 39(5): 611-618. DOI: 10.16078/j.tribology.2019068

Tribological Properties of Copper Matrix Composite with Lattice Reinforcement

Funds: The project was supported by the Yunnan Science and Technology Major Project (2018BA064), Science Research Fund of Yunnan Education Committee(2016ZZX044) and Kunming University of Science and Technology (SYYJ08)
More Information
  • Corresponding author:

    LI Zhenhua, E-mail: lzhkust@sina.com, Tel: +86-871-65916771

  • Received Date: April 15, 2019
  • Revised Date: May 14, 2019
  • Accepted Date: May 23, 2019
  • Available Online: September 15, 2019
  • Published Date: September 27, 2019
  • In order to effectively tune microstructure and properties of copper matrix composites, 18Ni300 lattices with different cell sizes of 5.00 mm, 3.75 mm, 2.75 mm, 1.75 mm, 0.75 mm were formed by selective laser melting. After being solidified with copper melt under pressure of squeeze casting process, the lattices combined with copper matrix and formed composites. The microstructure, hardness and wear morphology of samples were observed and analyzed, and wear tests of the composites were investigated by pin-on-disk procedure. The results indicate that the lattices performed a key role to improve the properties of the composites. The composite with lattice of 0.75 mm cell size showed the highest hardness and best wear resistance. The hardness reached HBW120 and was 1.71 times of the Cu matrix. The wear volume was 35.4 mm3 and was 58% lower than that of the Cu matrix. The wear mechanism of the composite was abrasive wear.
  • loading
  • [1]
    He X C, Zou G P, Xu Y X, et al. Nano-mechanical and tribological properties of copper matrix composites reinforced by graphene nanosheets[J]. Progress in Natural Science: Materials International, 2018, 28(4): 416–421. doi: 10.1016/j.pnsc.2018.04.014
    [2]
    蒋娅琳, 朱和国. 铜基复合材料的摩擦磨损性能研究现状[J]. 材料导报, 2014, 28(3): 33–36

    Jiang Yalin, Zhu Heguo. Research status of friction and wear properties of copper matrix composites[J]. Materials Review, 2014, 28(3): 33–36
    [3]
    符蓉, 高飞, 牟超, 等. 铜基复合材料干湿条件下的摩擦学行为[J]. 复合材料学报, 2010, 27(1): 79–85

    Fu Rong, Gao Fei, Mu Chao, et al. Tribological performance of copper matrix composites under dry and wet conditions[J]. Act Materiae Compositae Sinica, 2010, 27(1): 79–85
    [4]
    刘德宝, 崔春翔. 氮化物陶瓷颗粒增强铜基复合材料的干摩擦磨损性能研究[J]. 摩擦学学报, 2006, 26(1): 54–59 doi: 10.3321/j.issn:1004-0595.2006.01.012

    Liu Debao, Cui Chunxiang. Study on dry friction and wear properties of copper-matrix composites reinforced with nitrides ceramics particles[J]. Tribology, 2006, 26(1): 54–59 doi: 10.3321/j.issn:1004-0595.2006.01.012
    [5]
    顾冬冬, 沈以赴. 颗粒增强铜基复合材料的选区激光烧结制备[J]. 复合材料学报, 2007, 24(1): 53–59 doi: 10.3321/j.issn:1000-3851.2007.01.009

    Gu Dongdong, Shen Yifu. Fabrication of particle reinforced copper matrix composites by selective laser sintering[J]. Act Materiae Compositae Sinica, 2007, 24(1): 53–59 doi: 10.3321/j.issn:1000-3851.2007.01.009
    [6]
    车建明. 炭纤维增强铜基复合材料摩擦磨损性能同其磨损表面形貌相关性研究[J]. 摩擦学学报, 2004, 24(2): 144–147 doi: 10.3321/j.issn:1004-0595.2004.02.011

    Che Jianming. Correlation between the tribological behavior of carbon fiber reinforced copper matrix composite and its worn surface feature[J]. Tribology, 2004, 24(2): 144–147 doi: 10.3321/j.issn:1004-0595.2004.02.011
    [7]
    许玮, 傅恒志. 碳纳米管增强铜基复合材料的载流摩擦磨损性能研究[J]. 摩擦学学报, 2010, 30(3): 303–307

    Xu Wei, Fu Hengzhi. Friction and wear properties of carbon nanotubes reinforced copper matrix composites with and without electric current[J]. Tribology, 2010, 30(3): 303–307
    [8]
    谢素菁, 曹小明, 张劲松, 等. 三维网络SiC增强铜基复合材料的干摩擦磨损性能[J]. 摩擦学学报, 2003, 23(2): 86–90 doi: 10.3321/j.issn:1004-0595.2003.02.002

    Xie Sujing, Cao Xiaoming, Zhang Jinsong, et al. On the dry friction and wear properties of copper-matrix composites reinforced with 3D-meshy SiC[J]. Tribology, 2003, 23(2): 86–90 doi: 10.3321/j.issn:1004-0595.2003.02.002
    [9]
    Ma Mai Y J, Chen F X, Lian W Q, et al. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets[J]. Journal of Alloys and Compounds, 2018, 756: 1–7. doi: 10.1016/j.jallcom.2018.05.019
    [10]
    Shao G, Liu P, Zhang K, et al. Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering[J]. Materials Science and Engineering, 2019, 739: 329–334. doi: 10.1016/j.msea.2018.10.067
    [11]
    Qiao Z J, Zhou T, Kang J L, et al. Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity[J]. Materials Letters, 2018, 224: 37–41. doi: 10.1016/j.matlet.2018.04.069
    [12]
    黎志勇, 杨斌, 王鹏程, 等. 金属3D打印技术研究现状及其趋势[J]. 新技术新工艺, 2017, (4): 25–28

    Li Zhiyong, Yang Bin, Wang Pengcheng, et al. Research status and trend of metal 3D printing technology[J]. New Technology & New Process, 2017, (4): 25–28
    [13]
    杨广宇, 刘楠, 贾亮, 等. 钨铜复合材料用钨骨架的制备与压缩性能[J]. 粉末冶金材料科学与工程, 2017, (5): 701–706 doi: 10.3969/j.issn.1673-0224.2017.05.017

    Yang Guangyu, Liu Nan, Jia liang, et al. Fabrication and compression property of tungsten skeleton for tungsten-copper composite[J]. Materials Science and Engineering of Powder Metallurgy, 2017, (5): 701–706 doi: 10.3969/j.issn.1673-0224.2017.05.017
    [14]
    Frazier W. Metal Additive Manufacturing: A Review[J]. Journal of Materials Engineering & Performance, 2014, 23(6): 1917–1928.
    [15]
    Kohnen P, Haase C, Bultmann J. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel[J]. Materials & Design, 2018, 145: 205–217.
    [16]
    Rosa F, Manzoni S, Casati R. Damping behavior of 316L lattice structures produced by Selective Laser Melting[J]. Materials & Design, 2018, 160: 1010–1018.
    [17]
    Wang D, Yang Y Q, Liu R C, et al. Study on the designing rules and processability of porous structure based on selective laser melting (SLM)[J]. Journal of Materials Processing Technology, 2013, 213(10): 1734–1742. doi: 10.1016/j.jmatprotec.2013.05.001
    [18]
    Leary M, Mazur M, Williams H. Inconel 625 lattice structures manufactured by selective laser melting (SLM): Mechanical properties, deformation and failure modes[J]. Materials & Design, 2018, 157: 179–199.
    [19]
    徐蕾, 陈彩霞, 吴申庆. Al2O3纤维/M124F复合材料的凝固组织[J]. 复合材料学报, 2010, 27(6): 76–81

    Xu Lei, Chen Caixia, Wu Shenqing. Solidification microstructure of Al2O3 short fiber reinforced M124F composite[J]. Act Materiae Compositae Sinica, 2010, 27(6): 76–81
    [20]
    Chen G, Yang M, Jin Y. Ultrasonic assisted squeeze casting of a wrought aluminum alloy[J]. Journal of Materials Processing Technology, 2019, 266: 19–25. doi: 10.1016/j.jmatprotec.2018.10.032
    [21]
    Nakanishi R, Sueoka K, Shiba S. First principles calculation of stable structure and adhesive strength of plated Ni/Fe(100) or Cu/Fe(100) interfaces[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 988–991. doi: 10.1016/S1003-6326(08)60392-1

Catalog

    Figures(10)  /  Tables(2)

    Article views (1351) PDF downloads (83) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return