Citation: | YANG Jingjing, SHAN Yu, FU Yingying, QIAO Zhuhui, JIA Junhong, YI Gewen, WANG Wenzhen. Effects of In-Situ Synthesis Nanoscale Ag/Ag2MoO4 Composite Lubricants on Tribological Properties of YSZ Coatings[J]. TRIBOLOGY, 2019, 39(6): 756-765. DOI: 10.16078/j.tribology.2019048 |
[1] |
张绪寿, 余来贵. 表面工程摩擦学研究进展[J]. 摩擦学学报, 2000, 20(2): 156–160 doi: 10.3321/j.issn:1004-0595.2000.02.020
Zhang Xushou, Yu Laigui, Chen Jianmin. Research progress in surface engineering tribology[J]. Tribology, 2000, 20(2): 156–160 doi: 10.3321/j.issn:1004-0595.2000.02.020
|
[2] |
徐滨士, 欧忠文, 马世宁, 等. 纳米表面工程[J]. 中国机械工程, 2000, 11(6): 707–712 doi: 10.3321/j.issn:1004-132X.2000.06.032
Xu Binshi, Ou Zhongwen, Ma Shining, et al. Nano-surface-engineering[J]. China Mechanical Engineering, 2000, 11(6): 707–712 doi: 10.3321/j.issn:1004-132X.2000.06.032
|
[3] |
孙方红, 马壮, 刘应瑞, 等. 等离子喷涂制备热障涂层的研究进展[J]. 材料保护, 2013, 46(5): 45–57
Sun Fanghong, Ma Zhuang, Liu Yingrui, et al. Research progress of plasma spray techniques for preparing thermal barrier coatings[J]. Journal of Materials Protection, 2013, 46(5): 45–57
|
[4] |
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9-10): 18–26
Guo Hongbo, Gong Shengkai, Xu Huibin. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(9-10): 18–26
|
[5] |
崔慧然, 李宏然, 崔启政, 等. 航空发动机及燃气轮机叶片涂层概述[J]. 热喷涂技术, 2019, 11(1): 82–94 doi: 10.3969/j.issn.1674-7127.2019.01.011
Cui Huiran, Li Hongran, Cui Qizheng, et al. Summary of blade coatings for aero-engine and gas turbine[J]. Thermal Spray Technology, 2019, 11(1): 82–94 doi: 10.3969/j.issn.1674-7127.2019.01.011
|
[6] |
Shin Dongyun, Hamed Awatef. Influence of micro–structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions[J]. Wear, 2018, 396-397: 34–47. doi: 10.1016/j.wear.2017.11.005
|
[7] |
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722–2732
Guo Hongbo, Gong Shengkai, Xu Huibin. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2722–2732
|
[8] |
彭泽琰, 杜声同.航空燃气轮机原理[M]. 北京:国防工业出版社, 1990
Peng Zeyan, Du Shengtong. Principles of aviation gas turbine[M]. Beijing: National Defense Industry Press, 1990(in Chinese)
|
[9] |
Rajendran R. Gas turbine coatings–An overview[J]. Engineering Failure Analysis, 2012, 26: 355–369. doi: 10.1016/j.engfailanal.2012.07.007
|
[10] |
汪定江, 潘庆军, 夏成宝.军用飞机的腐蚀与防护[M].北京:航空工业出版社, 2006
Wang Dingjiang, Pan Qingjun, Xia Chengbao. Corrosion and protection of aircraft[M]. Beijing: Aviation Industry Press, 2006(in Chinese)
|
[11] |
Muratore C, Voevodin A A. Chameleon Coatings: Adaptive surfaces to reduce friction and wear in extreme environments[J]. Annual Review of Materials Research, 2009, 39(1): 297–324. doi: 10.1146/annurev-matsci-082908-145259
|
[12] |
Qiao X, Wang Y M, Weng W X, et al. Influence of pores on mechanical properties of plasma sprayed coatings: Case study of YSZ thermal barrier coatings[J]. Ceramics International, 2018, 44(17): 21564–21577. doi: 10.1016/j.ceramint.2018.08.220
|
[13] |
Padture N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8): 804–809. doi: 10.1038/nmat4687
|
[14] |
Murray James W, Rance Graham A, Xu Fang, et al. Alumina-graphene nanocomposite coatings fabricated by suspension high velocity oxy-fuel thermal spraying for ultra-low-wear[J]. Journal of the European Ceramic Society, 2018, 38(4): 1819–1828. doi: 10.1016/j.jeurceramsoc.2017.10.022
|
[15] |
Ghaemi M H, Reichert S, Krupa A, et al. Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications[J]. Ceramics International, 2017, 43(13): 9746–9752. doi: 10.1016/j.ceramint.2017.04.150
|
[16] |
Kong Lingqian, Bi Qinling, Niu Muye, et al. High-temperature tribological behavior of ZrO2-MoS2-CaF2 self-lubricating composites[J]. Journal of the European Ceramic Society, 2013, 33(1): 51–59. doi: 10.1016/j.jeurceramsoc.2012.08.003
|
[17] |
Lamuta C, Di Girolamo G, Pagnotta L. Microstructural mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters[J]. Ceramics International, 2015, 41(7): 8904–8914. doi: 10.1016/j.ceramint.2015.03.148
|
[18] |
Voevodin A, Zabinski J. Nanocomposite and nanostructured tribological materials for space applications[J]. Composites Science And Technology, 2005, 65(5): 741–748.
|
[19] |
Deng Wen, Li Shuangjian, Liu Xia, et al. A novel approach to fabricate hybrid materials with excellent tribological properties from spray-formed ceramic[J]. Materials Letters, 2017, 193: 199–202. doi: 10.1016/j.matlet.2017.01.148
|
[20] |
Li Shuangjian, Zhao Xiaoqin, An Yulong, et al. YSZ/MoS2 self-lubricating coating fabricated by thermal spraying and hydrothermal reaction[J]. Ceramics International, 2018, 44(15): 17864–17872. doi: 10.1016/j.ceramint.2018.06.258
|
[21] |
邓雯, 赵晓琴, 李双建, 等. Al2O3/MoS2复合涂层的制备及摩擦磨损性能[J]. 中国表面工程, 2017, 30(5): 110–118 doi: 10.11933/j.issn.1007-9289.20170324001
Deng wen, Zhao Xiaoqin, Li Shuangjian, et al. Preparation and tribological properties of Al2O3/MoS2 composite coating[J]. China Surface Engineering, 2017, 30(5): 110–118 doi: 10.11933/j.issn.1007-9289.20170324001
|
[22] |
Aouadi S M, Paudel Y, Simonson W J, et al. Tribological investigation of adaptive Mo N 2/MoS2/Ag coatings with high sulfur content[J]. Surface and Coatings Technology, 2009, 203(10-11): 1304–1309. doi: 10.1016/j.surfcoat.2008.10.040
|
[23] |
Hu J J, Muratore C, Voevodin A A. Silver diffusion and high-temperature lubrication mechanisms of YSZ–Ag–Mo based nanocomposite coatings[J]. Composites Science and Technology, 2007, 67(3-4): 336–347. doi: 10.1016/j.compscitech.2006.09.008
|
[24] |
Chen Jie, An Yulong, Yang Jie, et al. Tribological properties of adaptive NiCrAlY–Ag–Mo coatings prepared by atmospheric plasma spraying[J]. Surface and Coatings Technology, 2013, 235: 521–528. doi: 10.1016/j.surfcoat.2013.08.012
|
[25] |
Li Bo, Gao Yimin, Jia Junhong, et al. Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings[J]. Journal of Alloys and Compounds, 2016, 686: 503–510. doi: 10.1016/j.jallcom.2016.06.075
|
[26] |
Moura J V B, da Silva Filho J G, Freire P T C, et al. Phonon properties of β-Ag 2 MoO 4 : Raman spectroscopy and ab initio calculations[J]. Vibrational Spectroscopy, 2016, 86: 97–102. doi: 10.1016/j.vibspec.2016.06.009
|
[27] |
何鹏飞, 王海斗, 马国政, 等. 含银硬质涂层高温摩擦学性能的研究进展[J]. 中国有色金属学报, 2015, 25(11): 2962–2974
He Pengfei, Wang Haidou, Ma Guozheng, et al. Research progress of high-temperature tribological properties of silver-containing hard coatings[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2962–2974
|
[28] |
Muratore C, Voevodin A A. Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings[J]. Surface and Coatings Technology, 2006, 201(7): 4125–4130. doi: 10.1016/j.surfcoat.2006.08.014
|
[29] |
Wang Z, Kulkarni A, Deshpande S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J]. Acta Materialia, 2003, 51(18): 5319–5334. doi: 10.1016/S1359-6454(03)00390-2
|
[30] |
Du Hao, Shin Jae Heyg, Lee Soo Wohn. Study on porosity of plasma-sprayed coatings by digital image analysis method[J]. Journal of Thermal Spray Technology, 2005, 14(4): 453–461. doi: 10.1361/105996305X76450
|
[31] |
Thomas Neethu, Mani Ethayaraja. Mechanism and modeling of poly[vinylpyrrolidone] (PVP) facilitated synthesis of silver nanoplates[J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15507–15517. doi: 10.1039/C8CP01610K
|
[32] |
Wang Hua, Li Yang, Li Chen, et al. Facile synthesis of AgBr nanocubes for highly efficient visible light photocatalysts[J]. Crystengcomm, 2012, 14(22): 7563. doi: 10.1039/c2ce25750e
|
[33] |
Yang Hui, Liu Yan, Shen Qianhong, et al. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties[J]. Journal of Materials Chemistry, 2012, 22(45): 24132. doi: 10.1039/c2jm35621j
|
[34] |
Wang Zhongliao, Zhang Jinfeng, Lv Jiali, et al. Plasmonic Ag2MoO4 /AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism[J]. Applied Surface Science, 2017, 396: 791–798. doi: 10.1016/j.apsusc.2016.11.031
|
[35] |
Moura J V, Freitas T S, Cruz R P, et al. β-Ag2MoO4 microcrystals: Characterization, antibacterial properties and modulation analysis of antibiotic activity[J]. Biomedicine & Pharmacotherapy, 2017, 86: 242–247.
|
[36] |
Zhu Jiajun, Xu Meng, Yang Wulin, et al. Friction and wear behavior of an Ag–Mo Co-implanted GH4169 alloy via ion-beam-assisted bombardment[J]. Coatings, 2017, 7(11): 191. doi: 10.3390/coatings7110191
|
[37] |
Gulbiński Witold, Suszko Tomasz. Thin films of MoO3–Ag2O binary oxides–the high temperature lubricants[J]. Wear, 2006, 261(7-8): 867–873. doi: 10.1016/j.wear.2006.01.008
|
[38] |
Li Shuangjian, An Yulong, Zhou Huidi, et al. Plasma sprayed YSZ coatings deposited at different deposition temperatures, part 2: Tribological performance[J]. Surface and Coatings Technology, 2018, 349: 998–1007. doi: 10.1016/j.surfcoat.2018.06.093
|
[39] |
Liu Jiongjie, Wang Zixi, Yin Bing, et al. A novel method to prepare self-lubricity of Si3N4/Ag composite: Microstructure, mechanical and tribological properties[J]. Journal of the American Ceramic Society, 2018, 101(9): 3745–3748. doi: 10.1111/jace.15569
|
[40] |
Zhang Tiantian, Lan Hao, Huang Chuanbing, et al. Formation mechanism of the lubrication film on the plasma sprayed NiCoCrAlY-Cr2O3-AgMo coating at high temperatures[J]. Surface and Coatings Technology, 2017, 319: 47–54. doi: 10.1016/j.surfcoat.2017.03.065
|
[41] |
Aouadi Samir M, Paudel Yadab, Luster Brandon, et al. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications[J]. Tribology Letters, 2007, 29(2): 95–103.
|
1. |
胡华荣,尹果,杨洪宇,郭源君,颜建辉,陈芳. Ag掺杂Mo-12Si-8.5B合金在25~600℃的摩擦学行为. 摩擦学学报(中英文). 2024(07): 884-892 .
![]() | |
2. |
方子文,何乃如,贾均红,杨杰,刘宁. 等离子喷涂NiCrAlY-Cu涂层中Cu在宽温域环境下的扩散及摩擦耗散机制. 中国表面工程. 2023(02): 65-78 .
![]() | |
3. |
丰晓春,贾均红,高强,杨晶晶,王文珍,易戈文,王齐华. 添加Ag_2Nb_4O_(11)的NiAl基复合材料的高温摩擦学性能及高温润滑机理研究. 摩擦学学报. 2021(02): 187-196 .
![]() | |
4. |
石佩璎,易戈文,王齐华,万善宏,于源,孙虎伟,高强. MoO_3-ZnO/镍基复合涂层制备及其摩擦学性能研究. 摩擦学学报. 2021(06): 936-945 .
![]() | |
5. |
赵小云,龚红英,曹磊,施为钟,钱勇,廖泽寰. 挤压成型零件表面处理一体化装置. 轻工机械. 2020(06): 92-95+99 .
![]() |