ISSN   1004-0595

CN  62-1224/O4

Advanced Search
YANG Jingjing, SHAN Yu, FU Yingying, QIAO Zhuhui, JIA Junhong, YI Gewen, WANG Wenzhen. Effects of In-Situ Synthesis Nanoscale Ag/Ag2MoO4 Composite Lubricants on Tribological Properties of YSZ Coatings[J]. TRIBOLOGY, 2019, 39(6): 756-765. DOI: 10.16078/j.tribology.2019048
Citation: YANG Jingjing, SHAN Yu, FU Yingying, QIAO Zhuhui, JIA Junhong, YI Gewen, WANG Wenzhen. Effects of In-Situ Synthesis Nanoscale Ag/Ag2MoO4 Composite Lubricants on Tribological Properties of YSZ Coatings[J]. TRIBOLOGY, 2019, 39(6): 756-765. DOI: 10.16078/j.tribology.2019048

Effects of In-Situ Synthesis Nanoscale Ag/Ag2MoO4 Composite Lubricants on Tribological Properties of YSZ Coatings

Funds: The project was supported by the National Natural Science Foundation of China (51575505, 51675508, 51471181)
More Information
  • Corresponding author:

    YI Gewen, E-mail: gwyi@licp.cas.cn, Tel: +86-931-4968611

    WANG Wenzhen, E-mail: wzhwang@licp.cas.cn

  • Received Date: March 21, 2019
  • Revised Date: July 06, 2019
  • Accepted Date: September 16, 2019
  • Available Online: October 28, 2019
  • Published Date: November 27, 2019
  • In virtue of the intrinsic defects (micro- cracks and pores) of yttria-stabilized zirconia (YSZ) coatings fabricated by air plasma spraying, Ag/Ag2MoO4 were in-situ synthesized inside the pure YSZ coatings via vacuum impregnation process coupled with hydrothermal reaction. Results show that the generated Ag/Ag2MoO4 were spherical-like nanoparticles with the diameter of 78~111nm and YSZ-Ag/Ag2MoO4 composite coatings were successfully fabricated. The results of tribological tests present that the composite coatings possessed a lower friction coefficient and an extremely lower wear rate compared with the pure YSZ coatings at room temperature (RT) and 600 ℃. The excellent lubricating and were-resistant properties were ascribed to the formation of the smooth lubricating layers on the worn surfaces of composite coatings, thus effectively restraining the brittle fracture and abrasive wear of pure YSZ coatings.
  • [1]
    张绪寿, 余来贵. 表面工程摩擦学研究进展[J]. 摩擦学学报, 2000, 20(2): 156–160 doi: 10.3321/j.issn:1004-0595.2000.02.020

    Zhang Xushou, Yu Laigui, Chen Jianmin. Research progress in surface engineering tribology[J]. Tribology, 2000, 20(2): 156–160 doi: 10.3321/j.issn:1004-0595.2000.02.020
    [2]
    徐滨士, 欧忠文, 马世宁, 等. 纳米表面工程[J]. 中国机械工程, 2000, 11(6): 707–712 doi: 10.3321/j.issn:1004-132X.2000.06.032

    Xu Binshi, Ou Zhongwen, Ma Shining, et al. Nano-surface-engineering[J]. China Mechanical Engineering, 2000, 11(6): 707–712 doi: 10.3321/j.issn:1004-132X.2000.06.032
    [3]
    孙方红, 马壮, 刘应瑞, 等. 等离子喷涂制备热障涂层的研究进展[J]. 材料保护, 2013, 46(5): 45–57

    Sun Fanghong, Ma Zhuang, Liu Yingrui, et al. Research progress of plasma spray techniques for preparing thermal barrier coatings[J]. Journal of Materials Protection, 2013, 46(5): 45–57
    [4]
    郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9-10): 18–26

    Guo Hongbo, Gong Shengkai, Xu Huibin. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(9-10): 18–26
    [5]
    崔慧然, 李宏然, 崔启政, 等. 航空发动机及燃气轮机叶片涂层概述[J]. 热喷涂技术, 2019, 11(1): 82–94 doi: 10.3969/j.issn.1674-7127.2019.01.011

    Cui Huiran, Li Hongran, Cui Qizheng, et al. Summary of blade coatings for aero-engine and gas turbine[J]. Thermal Spray Technology, 2019, 11(1): 82–94 doi: 10.3969/j.issn.1674-7127.2019.01.011
    [6]
    Shin Dongyun, Hamed Awatef. Influence of micro–structure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions[J]. Wear, 2018, 396-397: 34–47. doi: 10.1016/j.wear.2017.11.005
    [7]
    郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722–2732

    Guo Hongbo, Gong Shengkai, Xu Huibin. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2722–2732
    [8]
    彭泽琰, 杜声同.航空燃气轮机原理[M]. 北京:国防工业出版社, 1990

    Peng Zeyan, Du Shengtong. Principles of aviation gas turbine[M]. Beijing: National Defense Industry Press, 1990(in Chinese)
    [9]
    Rajendran R. Gas turbine coatings–An overview[J]. Engineering Failure Analysis, 2012, 26: 355–369. doi: 10.1016/j.engfailanal.2012.07.007
    [10]
    汪定江, 潘庆军, 夏成宝.军用飞机的腐蚀与防护[M].北京:航空工业出版社, 2006

    Wang Dingjiang, Pan Qingjun, Xia Chengbao. Corrosion and protection of aircraft[M]. Beijing: Aviation Industry Press, 2006(in Chinese)
    [11]
    Muratore C, Voevodin A A. Chameleon Coatings: Adaptive surfaces to reduce friction and wear in extreme environments[J]. Annual Review of Materials Research, 2009, 39(1): 297–324. doi: 10.1146/annurev-matsci-082908-145259
    [12]
    Qiao X, Wang Y M, Weng W X, et al. Influence of pores on mechanical properties of plasma sprayed coatings: Case study of YSZ thermal barrier coatings[J]. Ceramics International, 2018, 44(17): 21564–21577. doi: 10.1016/j.ceramint.2018.08.220
    [13]
    Padture N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8): 804–809. doi: 10.1038/nmat4687
    [14]
    Murray James W, Rance Graham A, Xu Fang, et al. Alumina-graphene nanocomposite coatings fabricated by suspension high velocity oxy-fuel thermal spraying for ultra-low-wear[J]. Journal of the European Ceramic Society, 2018, 38(4): 1819–1828. doi: 10.1016/j.jeurceramsoc.2017.10.022
    [15]
    Ghaemi M H, Reichert S, Krupa A, et al. Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications[J]. Ceramics International, 2017, 43(13): 9746–9752. doi: 10.1016/j.ceramint.2017.04.150
    [16]
    Kong Lingqian, Bi Qinling, Niu Muye, et al. High-temperature tribological behavior of ZrO2-MoS2-CaF2 self-lubricating composites[J]. Journal of the European Ceramic Society, 2013, 33(1): 51–59. doi: 10.1016/j.jeurceramsoc.2012.08.003
    [17]
    Lamuta C, Di Girolamo G, Pagnotta L. Microstructural mechanical and tribological properties of nanostructured YSZ coatings produced with different APS process parameters[J]. Ceramics International, 2015, 41(7): 8904–8914. doi: 10.1016/j.ceramint.2015.03.148
    [18]
    Voevodin A, Zabinski J. Nanocomposite and nanostructured tribological materials for space applications[J]. Composites Science And Technology, 2005, 65(5): 741–748.
    [19]
    Deng Wen, Li Shuangjian, Liu Xia, et al. A novel approach to fabricate hybrid materials with excellent tribological properties from spray-formed ceramic[J]. Materials Letters, 2017, 193: 199–202. doi: 10.1016/j.matlet.2017.01.148
    [20]
    Li Shuangjian, Zhao Xiaoqin, An Yulong, et al. YSZ/MoS2 self-lubricating coating fabricated by thermal spraying and hydrothermal reaction[J]. Ceramics International, 2018, 44(15): 17864–17872. doi: 10.1016/j.ceramint.2018.06.258
    [21]
    邓雯, 赵晓琴, 李双建, 等. Al2O3/MoS2复合涂层的制备及摩擦磨损性能[J]. 中国表面工程, 2017, 30(5): 110–118 doi: 10.11933/j.issn.1007-9289.20170324001

    Deng wen, Zhao Xiaoqin, Li Shuangjian, et al. Preparation and tribological properties of Al2O3/MoS2 composite coating[J]. China Surface Engineering, 2017, 30(5): 110–118 doi: 10.11933/j.issn.1007-9289.20170324001
    [22]
    Aouadi S M, Paudel Y, Simonson W J, et al. Tribological investigation of adaptive Mo N 2/MoS2/Ag coatings with high sulfur content[J]. Surface and Coatings Technology, 2009, 203(10-11): 1304–1309. doi: 10.1016/j.surfcoat.2008.10.040
    [23]
    Hu J J, Muratore C, Voevodin A A. Silver diffusion and high-temperature lubrication mechanisms of YSZ–Ag–Mo based nanocomposite coatings[J]. Composites Science and Technology, 2007, 67(3-4): 336–347. doi: 10.1016/j.compscitech.2006.09.008
    [24]
    Chen Jie, An Yulong, Yang Jie, et al. Tribological properties of adaptive NiCrAlY–Ag–Mo coatings prepared by atmospheric plasma spraying[J]. Surface and Coatings Technology, 2013, 235: 521–528. doi: 10.1016/j.surfcoat.2013.08.012
    [25]
    Li Bo, Gao Yimin, Jia Junhong, et al. Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings[J]. Journal of Alloys and Compounds, 2016, 686: 503–510. doi: 10.1016/j.jallcom.2016.06.075
    [26]
    Moura J V B, da Silva Filho J G, Freire P T C, et al. Phonon properties of β-Ag 2 MoO 4 : Raman spectroscopy and ab initio calculations[J]. Vibrational Spectroscopy, 2016, 86: 97–102. doi: 10.1016/j.vibspec.2016.06.009
    [27]
    何鹏飞, 王海斗, 马国政, 等. 含银硬质涂层高温摩擦学性能的研究进展[J]. 中国有色金属学报, 2015, 25(11): 2962–2974

    He Pengfei, Wang Haidou, Ma Guozheng, et al. Research progress of high-temperature tribological properties of silver-containing hard coatings[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2962–2974
    [28]
    Muratore C, Voevodin A A. Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings[J]. Surface and Coatings Technology, 2006, 201(7): 4125–4130. doi: 10.1016/j.surfcoat.2006.08.014
    [29]
    Wang Z, Kulkarni A, Deshpande S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J]. Acta Materialia, 2003, 51(18): 5319–5334. doi: 10.1016/S1359-6454(03)00390-2
    [30]
    Du Hao, Shin Jae Heyg, Lee Soo Wohn. Study on porosity of plasma-sprayed coatings by digital image analysis method[J]. Journal of Thermal Spray Technology, 2005, 14(4): 453–461. doi: 10.1361/105996305X76450
    [31]
    Thomas Neethu, Mani Ethayaraja. Mechanism and modeling of poly[vinylpyrrolidone] (PVP) facilitated synthesis of silver nanoplates[J]. Physical Chemistry Chemical Physics, 2018, 20(22): 15507–15517. doi: 10.1039/C8CP01610K
    [32]
    Wang Hua, Li Yang, Li Chen, et al. Facile synthesis of AgBr nanocubes for highly efficient visible light photocatalysts[J]. Crystengcomm, 2012, 14(22): 7563. doi: 10.1039/c2ce25750e
    [33]
    Yang Hui, Liu Yan, Shen Qianhong, et al. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties[J]. Journal of Materials Chemistry, 2012, 22(45): 24132. doi: 10.1039/c2jm35621j
    [34]
    Wang Zhongliao, Zhang Jinfeng, Lv Jiali, et al. Plasmonic Ag2MoO4 /AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism[J]. Applied Surface Science, 2017, 396: 791–798. doi: 10.1016/j.apsusc.2016.11.031
    [35]
    Moura J V, Freitas T S, Cruz R P, et al. β-Ag2MoO4 microcrystals: Characterization, antibacterial properties and modulation analysis of antibiotic activity[J]. Biomedicine & Pharmacotherapy, 2017, 86: 242–247.
    [36]
    Zhu Jiajun, Xu Meng, Yang Wulin, et al. Friction and wear behavior of an Ag–Mo Co-implanted GH4169 alloy via ion-beam-assisted bombardment[J]. Coatings, 2017, 7(11): 191. doi: 10.3390/coatings7110191
    [37]
    Gulbiński Witold, Suszko Tomasz. Thin films of MoO3–Ag2O binary oxides–the high temperature lubricants[J]. Wear, 2006, 261(7-8): 867–873. doi: 10.1016/j.wear.2006.01.008
    [38]
    Li Shuangjian, An Yulong, Zhou Huidi, et al. Plasma sprayed YSZ coatings deposited at different deposition temperatures, part 2: Tribological performance[J]. Surface and Coatings Technology, 2018, 349: 998–1007. doi: 10.1016/j.surfcoat.2018.06.093
    [39]
    Liu Jiongjie, Wang Zixi, Yin Bing, et al. A novel method to prepare self-lubricity of Si3N4/Ag composite: Microstructure, mechanical and tribological properties[J]. Journal of the American Ceramic Society, 2018, 101(9): 3745–3748. doi: 10.1111/jace.15569
    [40]
    Zhang Tiantian, Lan Hao, Huang Chuanbing, et al. Formation mechanism of the lubrication film on the plasma sprayed NiCoCrAlY-Cr2O3-AgMo coating at high temperatures[J]. Surface and Coatings Technology, 2017, 319: 47–54. doi: 10.1016/j.surfcoat.2017.03.065
    [41]
    Aouadi Samir M, Paudel Yadab, Luster Brandon, et al. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications[J]. Tribology Letters, 2007, 29(2): 95–103.
  • Cited by

    Periodical cited type(5)

    1. 胡华荣,尹果,杨洪宇,郭源君,颜建辉,陈芳. Ag掺杂Mo-12Si-8.5B合金在25~600℃的摩擦学行为. 摩擦学学报(中英文). 2024(07): 884-892 .
    2. 方子文,何乃如,贾均红,杨杰,刘宁. 等离子喷涂NiCrAlY-Cu涂层中Cu在宽温域环境下的扩散及摩擦耗散机制. 中国表面工程. 2023(02): 65-78 .
    3. 丰晓春,贾均红,高强,杨晶晶,王文珍,易戈文,王齐华. 添加Ag_2Nb_4O_(11)的NiAl基复合材料的高温摩擦学性能及高温润滑机理研究. 摩擦学学报. 2021(02): 187-196 . 本站查看
    4. 石佩璎,易戈文,王齐华,万善宏,于源,孙虎伟,高强. MoO_3-ZnO/镍基复合涂层制备及其摩擦学性能研究. 摩擦学学报. 2021(06): 936-945 . 本站查看
    5. 赵小云,龚红英,曹磊,施为钟,钱勇,廖泽寰. 挤压成型零件表面处理一体化装置. 轻工机械. 2020(06): 92-95+99 .

    Other cited types(5)

Catalog

    Article views (1454) PDF downloads (61) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return