ISSN   1004-0595

CN  62-1224/O4

Advanced Search
LI Xiao, YANG Zenghui, DUAN Chunjian, WANG Tingmei, WANG Qihua, ZHANG Xinrui. Effects of Molecular Weight and Crosslinking Density on the Tribological Properties of Shape Memory Polyimides[J]. TRIBOLOGY, 2019, 39(5): 547-555. DOI: 10.16078/j.tribology.2019043
Citation: LI Xiao, YANG Zenghui, DUAN Chunjian, WANG Tingmei, WANG Qihua, ZHANG Xinrui. Effects of Molecular Weight and Crosslinking Density on the Tribological Properties of Shape Memory Polyimides[J]. TRIBOLOGY, 2019, 39(5): 547-555. DOI: 10.16078/j.tribology.2019043

Effects of Molecular Weight and Crosslinking Density on the Tribological Properties of Shape Memory Polyimides

Funds: The project was supported by the National Natural Science Foundation of China (51673205, 51875549),Talents Training Project of Youth Innovation Promotion Association(2018457) and the Key Research Program of Frontier Science, Chinese Academy of Science (QYZDJ-SSW-SLH056)
More Information
  • Corresponding author:

    WANG Qihua, E-mail: wangqh@licp.cas.cn, Tel: +86-931-4968180

    ZHANG Xinrui, E-mail: xruiz@licp.cas.cn, Tel: +86-931-4968369

  • Received Date: March 18, 2019
  • Revised Date: April 23, 2019
  • Accepted Date: May 11, 2019
  • Available Online: September 20, 2019
  • Published Date: September 27, 2019
  • In recent years, owing to the self-responsive ability of shape memory polymers (SMPs) towards thermal, optical, magnetic, electrical and other external stimulus, this smart material has attracted more and more attention in the self-lubricating materials field. In this study, 3, 3′, 4, 4′-biphenyl tetracarboxylic acid dianhydride (BPDA), 4, 4′-diamino diphenyl ether (ODA) and melamine were used as precursor to prepare a series of thermoplastic polyimides (TPIs) with different molecular weights (Mn) and thermoset polyimide (CPIs) with different crosslinking densities (d). Moreover, dry sliding tests were performed on a ball-on-disc reciprocating wear tester to characterize the tribological performance of materials. The results show different friction and wear mechanisms for the two kinds of polymers. And with the increase of molecular weight Mn and the introduction of crosslinking agent, a significantly decrease were exhibited in the friction coefficient and volume wear rate of materials. In addition, local friction heat in the process of friction induced the local shape memory effect of linear polyimides, which reduced the coefficient of friction and wear rate to a certain extent. However, the shape memory effect on thermoset polyimides was insignificant.
  • loading
  • [1]
    Bower G M, Frost L W. Aromatic polyimides[J]. Journal of Polymer Science Part A: General Papers, 1963, 1(10): 3135–3150. doi: 10.1002/pol.1963.100011009
    [2]
    Ghosh M. Polyimides: fundamentals and applications[M]. CRC Press, 1996.
    [3]
    Chitsaz-Zadeh M, Eiss N. Friction and wear of polyimide thin films[J]. Wear, 1986, 110(3-4): 359–368. doi: 10.1016/0043-1648(86)90109-2
    [4]
    Yoonessi M, Shi Y, Scheiman D A, et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects[J]. ACS Nano, 2012, 6(9): 7644–7655. doi: 10.1021/nn302871y
    [5]
    Koerner H, Strong R J, Smith M L, et al. Polymer design for high temperature shape memory: Low crosslink density polyimides[J]. Polymer, 2013, 54(1): 391–402. doi: 10.1016/j.polymer.2012.11.007
    [6]
    Wang Q, Bai Y, Chen Y, et al. High performance shape memory polyimides based on π-π interactions[J]. Journal of Materials Chemistry A, 2015, 3(1): 352–359. doi: 10.1039/C4TA05058D
    [7]
    Yang Z, Chen Y, Wang Q, et al. High performance multiple-shape memory behaviors of Poly(benzoxazole-co-imide)s[J]. Polymer, 2016, 88: 19–28. doi: 10.1016/j.polymer.2016.02.001
    [8]
    Xiao X, Kong D, Qiu X, et al. Shape-memory polymers with adjustable high glass transition temperatures[J]. Macromolecules, 2015, 48(11): 3582–3589. doi: 10.1021/acs.macromol.5b00654
    [9]
    张新民. 智能材料研究进展[J]. 玻璃钢/复合材料, 2013(6): 57–63 doi: 10.3969/j.issn.1003-0999.2013.06.012

    Zhang Xinmin. The research process of smart materials[J]. FRP/CM, 2013(6): 57–63 doi: 10.3969/j.issn.1003-0999.2013.06.012
    [10]
    Guan Q, Picken SJ, Sheiko SS, et al. High-temperature shape memory behavior of novel all-aromatic (AB)n-multiblock copoly(ester imide)s[J]. Macromolecules, 2017, 50(10): 3903–3910. doi: 10.1021/acs.macromol.7b00569
    [11]
    李帅, 张卓, 杨威, 等. 聚合物热致形状记忆行为的机理[J]. 塑料, 2018, 47(6): 118–125

    Li Shuai, Zhang Zhuo, Yang Wei, et al. Mechanism progress for thermally-stimulated shape memory behavior of polymer[J]. New Chemical Materials, 2018, 47(6): 118–125
    [12]
    李冰, 律微波, 赵宁, 等. 聚酰亚胺基固体润滑材料研究进展[J]. 化工新型材料, 2017, 45(6): 8–10

    Li Bing, Lv Weibo, Zhao Ning, et al. Research development of polyimide based solid lubricant[J]. New Chemical Materials, 2017, 45(6): 8–10
    [13]
    胡超, 齐慧敏. 聚酰亚胺复合材料摩擦学研究进展[J]. 淮阴工学院学报, 2019, 28(1): 15–20 doi: 10.3969/j.issn.1009-7961.2019.01.004

    Hu Chao, Qi Huimin. Recent progress in tribology of polyimide self-lubricated composites[J]. Journal of Huaiyin Institute of Technology, 2019, 28(1): 15–20 doi: 10.3969/j.issn.1009-7961.2019.01.004
    [14]
    Huang T, Xin Y, Li T, et al. Modified graphene/polyimide nanocomposites: reinforcing and tribological effects[J]. ACS applied materials & interfaces, 2013, 5(11): 4878–4891.
    [15]
    Cai H, Yan F, Xue Q. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites[J]. Materials Science and Engineering: A, 2004, 364(1): 94–100.
    [16]
    Farr JPG. Molybdenum disulphide in lubrication. A review[J]. Wear, 1975, 35(1): 1–22. doi: 10.1016/0043-1648(75)90137-4
    [17]
    Tanaka A, Umeda K, Takatsu S. Friction and wear of diamond-containing polyimide composites in water and air[J]. Wear, 2004, 257(11): 1096–1102. doi: 10.1016/j.wear.2004.06.003
    [18]
    Wang Q, Zhang X, Pei X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites[J]. Materials & Design, 2010, 31(8): 3761–3768.
    [19]
    王建吉, 刘涛. 聚酰亚胺填充PTFE复合材料摩擦学性能的研究[J]. 功能材料, 2018, 49(9): 09072–09077

    Wang Jianji, Liu Tao. Friction and wear properties of PTFE composites filled with different mix materials made of polyimide and graphite[J]. Functional Materials, 2018, 49(9): 09072–09077
    [20]
    王廷梅, 邵鑫, 王齐华, 等. 聚酰亚胺/二硫化钼插层复合材料的制备及其摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4): 322–327 doi: 10.3321/j.issn:1004-0595.2005.04.008

    Wang Tingmei, Shao Xin, Wang Qihua, et al. Preparation and tribological behavior of polyimide /MoS2 intercalation composite[J]. Tribology, 2005, 25(4): 322–327 doi: 10.3321/j.issn:1004-0595.2005.04.008
    [21]
    Jacko M G, Tsang P H S, Rhee S K. Wear debris compaction and friction film formation of polymer composites[J]. Wear, 1989, 133(1): 23–38. doi: 10.1016/0043-1648(89)90110-5
    [22]
    Qi H, Li G, Zhang G, et al. Impact of counterpart materials and nanoparticles on the transfer film structures of polyimide composites[J]. Materials & Design, 2016, 109: 367–377.
    [23]
    Satyanarayana N, Rajan KSS, Sinha SK, et al. Carbon nanotube reinforced polyimide thin-film for high wear durability[J]. Tribology Letters, 2007, 27(2): 181–188. doi: 10.1007/s11249-007-9219-8
    [24]
    Tian J, Wang H, Huang Z, et al. Investigation on tribological properties of fluorinated polyimide[J]. Journal of Macromolecular Science, Part B, 2010, 49(4): 791–801. doi: 10.1080/00222341003600806
    [25]
    Huang T, Liu P, Lu R, et al. Modification of polyetherimide by phenylethynyl terminated agent for improved tribological, macro- and micro-mechanical properties[J]. Wear, 2012, 292-293: 25–32. doi: 10.1016/j.wear.2012.06.003
    [26]
    段春俭, 崔宇, 王超, 等. 高温条件下热固性聚酰亚胺摩擦学性能研究[J]. 摩擦学学报, 2017, 37(6): 717–724 doi: 10.16078/j.tribology.2017.06.002

    Duan Chunjian, Cui Yu, Wang Chao, et al. High temperature tribological properties of thermosetting polyimide[J]. Tribology, 2017, 37(6): 717–724 doi: 10.16078/j.tribology.2017.06.002
    [27]
    Hager M D, Bode S, Weber C, et al. Shape memory polymers: past, present and future developments[J]. Progress in Polymer Science, 2015, 49-50: 3–33. doi: 10.1016/j.progpolymsci.2015.04.002
    [28]
    Fox Jr T G, Flory P J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight[J]. Journal of Applied Physics, 1950, 21(6): 581–591. doi: 10.1063/1.1699711
    [29]
    Odian G. Principles of polymerization[M]. John Wiley & Sons, 2004
    [30]
    Tobolsky A V, Katz D, Thach R, et al. Rubber elasticity in a high crosslinked system[J]. Journal of Polymer Science, 1962, 62(174): S176–S177. doi: 10.1002/pol.1962.1206217469
    [31]
    Safranski D L, Gall K. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks[J]. Polymer, 2008, 49(20): 4446–4455. doi: 10.1016/j.polymer.2008.07.060
    [32]
    Ortega A M, Yakacki C M, Dixon S A, et al. Effect of crosslinking and long-term storage on the shape-memory behavior of (meth)acrylate-based shape-memory polymers[J]. Soft Matter, 2012, 8(28): 7381–7392. doi: 10.1039/c2sm25298h
    [33]
    Zheng N, Hou J, Xu Y, et al. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance[J]. ACS Macro Letters, 2017: 326–330.
    [34]
    Maeda N, Chen N, Tirrell M, et al. Adhesion and friction mechanisms of polymer-on-polymer surfaces[J]. Science, 2002, 297(5580): 379. doi: 10.1126/science.1072378

Catalog

    Figures(6)  /  Tables(1)

    Article views (1747) PDF downloads (104) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return