Citation: | LI Xiao, YANG Zenghui, DUAN Chunjian, WANG Tingmei, WANG Qihua, ZHANG Xinrui. Effects of Molecular Weight and Crosslinking Density on the Tribological Properties of Shape Memory Polyimides[J]. TRIBOLOGY, 2019, 39(5): 547-555. DOI: 10.16078/j.tribology.2019043 |
[1] |
Bower G M, Frost L W. Aromatic polyimides[J]. Journal of Polymer Science Part A: General Papers, 1963, 1(10): 3135–3150. doi: 10.1002/pol.1963.100011009
|
[2] |
Ghosh M. Polyimides: fundamentals and applications[M]. CRC Press, 1996.
|
[3] |
Chitsaz-Zadeh M, Eiss N. Friction and wear of polyimide thin films[J]. Wear, 1986, 110(3-4): 359–368. doi: 10.1016/0043-1648(86)90109-2
|
[4] |
Yoonessi M, Shi Y, Scheiman D A, et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects[J]. ACS Nano, 2012, 6(9): 7644–7655. doi: 10.1021/nn302871y
|
[5] |
Koerner H, Strong R J, Smith M L, et al. Polymer design for high temperature shape memory: Low crosslink density polyimides[J]. Polymer, 2013, 54(1): 391–402. doi: 10.1016/j.polymer.2012.11.007
|
[6] |
Wang Q, Bai Y, Chen Y, et al. High performance shape memory polyimides based on π-π interactions[J]. Journal of Materials Chemistry A, 2015, 3(1): 352–359. doi: 10.1039/C4TA05058D
|
[7] |
Yang Z, Chen Y, Wang Q, et al. High performance multiple-shape memory behaviors of Poly(benzoxazole-co-imide)s[J]. Polymer, 2016, 88: 19–28. doi: 10.1016/j.polymer.2016.02.001
|
[8] |
Xiao X, Kong D, Qiu X, et al. Shape-memory polymers with adjustable high glass transition temperatures[J]. Macromolecules, 2015, 48(11): 3582–3589. doi: 10.1021/acs.macromol.5b00654
|
[9] |
张新民. 智能材料研究进展[J]. 玻璃钢/复合材料, 2013(6): 57–63 doi: 10.3969/j.issn.1003-0999.2013.06.012
Zhang Xinmin. The research process of smart materials[J]. FRP/CM, 2013(6): 57–63 doi: 10.3969/j.issn.1003-0999.2013.06.012
|
[10] |
Guan Q, Picken SJ, Sheiko SS, et al. High-temperature shape memory behavior of novel all-aromatic (AB)n-multiblock copoly(ester imide)s[J]. Macromolecules, 2017, 50(10): 3903–3910. doi: 10.1021/acs.macromol.7b00569
|
[11] |
李帅, 张卓, 杨威, 等. 聚合物热致形状记忆行为的机理[J]. 塑料, 2018, 47(6): 118–125
Li Shuai, Zhang Zhuo, Yang Wei, et al. Mechanism progress for thermally-stimulated shape memory behavior of polymer[J]. New Chemical Materials, 2018, 47(6): 118–125
|
[12] |
李冰, 律微波, 赵宁, 等. 聚酰亚胺基固体润滑材料研究进展[J]. 化工新型材料, 2017, 45(6): 8–10
Li Bing, Lv Weibo, Zhao Ning, et al. Research development of polyimide based solid lubricant[J]. New Chemical Materials, 2017, 45(6): 8–10
|
[13] |
胡超, 齐慧敏. 聚酰亚胺复合材料摩擦学研究进展[J]. 淮阴工学院学报, 2019, 28(1): 15–20 doi: 10.3969/j.issn.1009-7961.2019.01.004
Hu Chao, Qi Huimin. Recent progress in tribology of polyimide self-lubricated composites[J]. Journal of Huaiyin Institute of Technology, 2019, 28(1): 15–20 doi: 10.3969/j.issn.1009-7961.2019.01.004
|
[14] |
Huang T, Xin Y, Li T, et al. Modified graphene/polyimide nanocomposites: reinforcing and tribological effects[J]. ACS applied materials & interfaces, 2013, 5(11): 4878–4891.
|
[15] |
Cai H, Yan F, Xue Q. Investigation of tribological properties of polyimide/carbon nanotube nanocomposites[J]. Materials Science and Engineering: A, 2004, 364(1): 94–100.
|
[16] |
Farr JPG. Molybdenum disulphide in lubrication. A review[J]. Wear, 1975, 35(1): 1–22. doi: 10.1016/0043-1648(75)90137-4
|
[17] |
Tanaka A, Umeda K, Takatsu S. Friction and wear of diamond-containing polyimide composites in water and air[J]. Wear, 2004, 257(11): 1096–1102. doi: 10.1016/j.wear.2004.06.003
|
[18] |
Wang Q, Zhang X, Pei X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites[J]. Materials & Design, 2010, 31(8): 3761–3768.
|
[19] |
王建吉, 刘涛. 聚酰亚胺填充PTFE复合材料摩擦学性能的研究[J]. 功能材料, 2018, 49(9): 09072–09077
Wang Jianji, Liu Tao. Friction and wear properties of PTFE composites filled with different mix materials made of polyimide and graphite[J]. Functional Materials, 2018, 49(9): 09072–09077
|
[20] |
王廷梅, 邵鑫, 王齐华, 等. 聚酰亚胺/二硫化钼插层复合材料的制备及其摩擦磨损性能研究[J]. 摩擦学学报, 2005, 25(4): 322–327 doi: 10.3321/j.issn:1004-0595.2005.04.008
Wang Tingmei, Shao Xin, Wang Qihua, et al. Preparation and tribological behavior of polyimide /MoS2 intercalation composite[J]. Tribology, 2005, 25(4): 322–327 doi: 10.3321/j.issn:1004-0595.2005.04.008
|
[21] |
Jacko M G, Tsang P H S, Rhee S K. Wear debris compaction and friction film formation of polymer composites[J]. Wear, 1989, 133(1): 23–38. doi: 10.1016/0043-1648(89)90110-5
|
[22] |
Qi H, Li G, Zhang G, et al. Impact of counterpart materials and nanoparticles on the transfer film structures of polyimide composites[J]. Materials & Design, 2016, 109: 367–377.
|
[23] |
Satyanarayana N, Rajan KSS, Sinha SK, et al. Carbon nanotube reinforced polyimide thin-film for high wear durability[J]. Tribology Letters, 2007, 27(2): 181–188. doi: 10.1007/s11249-007-9219-8
|
[24] |
Tian J, Wang H, Huang Z, et al. Investigation on tribological properties of fluorinated polyimide[J]. Journal of Macromolecular Science, Part B, 2010, 49(4): 791–801. doi: 10.1080/00222341003600806
|
[25] |
Huang T, Liu P, Lu R, et al. Modification of polyetherimide by phenylethynyl terminated agent for improved tribological, macro- and micro-mechanical properties[J]. Wear, 2012, 292-293: 25–32. doi: 10.1016/j.wear.2012.06.003
|
[26] |
段春俭, 崔宇, 王超, 等. 高温条件下热固性聚酰亚胺摩擦学性能研究[J]. 摩擦学学报, 2017, 37(6): 717–724 doi: 10.16078/j.tribology.2017.06.002
Duan Chunjian, Cui Yu, Wang Chao, et al. High temperature tribological properties of thermosetting polyimide[J]. Tribology, 2017, 37(6): 717–724 doi: 10.16078/j.tribology.2017.06.002
|
[27] |
Hager M D, Bode S, Weber C, et al. Shape memory polymers: past, present and future developments[J]. Progress in Polymer Science, 2015, 49-50: 3–33. doi: 10.1016/j.progpolymsci.2015.04.002
|
[28] |
Fox Jr T G, Flory P J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight[J]. Journal of Applied Physics, 1950, 21(6): 581–591. doi: 10.1063/1.1699711
|
[29] |
Odian G. Principles of polymerization[M]. John Wiley & Sons, 2004
|
[30] |
Tobolsky A V, Katz D, Thach R, et al. Rubber elasticity in a high crosslinked system[J]. Journal of Polymer Science, 1962, 62(174): S176–S177. doi: 10.1002/pol.1962.1206217469
|
[31] |
Safranski D L, Gall K. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks[J]. Polymer, 2008, 49(20): 4446–4455. doi: 10.1016/j.polymer.2008.07.060
|
[32] |
Ortega A M, Yakacki C M, Dixon S A, et al. Effect of crosslinking and long-term storage on the shape-memory behavior of (meth)acrylate-based shape-memory polymers[J]. Soft Matter, 2012, 8(28): 7381–7392. doi: 10.1039/c2sm25298h
|
[33] |
Zheng N, Hou J, Xu Y, et al. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance[J]. ACS Macro Letters, 2017: 326–330.
|
[34] |
Maeda N, Chen N, Tirrell M, et al. Adhesion and friction mechanisms of polymer-on-polymer surfaces[J]. Science, 2002, 297(5580): 379. doi: 10.1126/science.1072378
|