ISSN   1004-0595

CN  62-1224/O4

Advanced Search
XIE Bohua, JU Pengfei, JI Li, LI Hongxuan, ZHOU Huidi, CHEN Jianmin. Research Progress on Tribology of Electrical Contact Materials[J]. TRIBOLOGY, 2019, 39(5): 656-668. DOI: 10.16078/j.tribology.2019025
Citation: XIE Bohua, JU Pengfei, JI Li, LI Hongxuan, ZHOU Huidi, CHEN Jianmin. Research Progress on Tribology of Electrical Contact Materials[J]. TRIBOLOGY, 2019, 39(5): 656-668. DOI: 10.16078/j.tribology.2019025

Research Progress on Tribology of Electrical Contact Materials

Funds: The project was supported by the National Natural Science Foundation of China (U1637204) and the Natural Science Foundation of Gansu province, China (17JR5RA292)
More Information
  • Corresponding author:

    CHEN Jianmin, E-mail: chenjm@licp.cas.cn, Tel: +86-931-4968018

  • Received Date: February 17, 2019
  • Revised Date: March 31, 2019
  • Accepted Date: April 23, 2019
  • Available Online: September 15, 2019
  • Published Date: September 27, 2019
  • It is of great importance to do research of electric contact materials, not only for their applications in life and productions, but also for their complex friction and wear problems. This review summarized the characteristics and existing problems of several common copper-based, silver-based and gold-based electric contact materials, and analyzed current-carrying tribological behavior, friction and wear mechanism, computational simulation research and existing problems of electric contact materials under different contact load, current and sliding speed, etc. Putting forward the development of new electric contact materials with excellent properties such as graphene, as well as the wear behavior and failure mechanism of the electric contact system under multi-factor coupling in the future, which will provide certain reference value for the research and development of tribology of electric contact materials.
  • [1]
    Holm, Ragnar. Electric contacts: theory and application/-4th ed[M]. Springer, 1979.
    [2]
    郭凤仪, 陈忠华. 电接触理论及其应用技术[M]. 北京: 中国电力出版社, 2008

    Guo Fengyi, Chen Zhonghua. Electric contact theory and its application technology[M]. Beijing: China Electric Power Press, 2008(in Chinese)
    [3]
    王新平. 空间滑动电接触材料的性能及其寿命增长研究[D]. 长沙: 中南大学, 2013

    Wang Xinping. The properties and lifetime growth research of sliding electrical contact materials for space application[D]. Changsha: Central South University, 2013(in Chinese)
    [4]
    李司山, 黄福祥, 汪振, 等. 电接触材料的研究进展[J]. 材料导报, 2008, 22(S1): 303–306

    Li Sishan, Huang Fuxiang, Wang Zhen, et al. Research progress in electric contact materials[J]. Materials Review, 2008, 22(S1): 303–306
    [5]
    Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear, 1998, 216(2): 179–183. doi: 10.1016/S0043-1648(97)00162-2
    [6]
    Huang S Y, Feng Y, Liu H J, et al. Electrical sliding friction and wear properties of Cu-MoS2-graphite-WS2 nanotubes composites in air and vacuum conditions[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2013, 560: 685–692. doi: 10.1016/j.msea.2012.10.014
    [7]
    Rohatgi P K, Ray S, Liu Y. Tribological properties of metal matrix graphite particle composites[J]. Internationl Materials Reviews, 1992, 37(3): 129–149.
    [8]
    Qian G, Feng Y, Chen Y M, et al. Effect of WS2 addition on electrical sliding wear behaviors of Cu-graphite-WS2 composites[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1986–1994. doi: 10.1016/S1003-6326(15)63807-9
    [9]
    吴晓光, 张红波, 尹健, 等. PF/CNTs-Cu复合材料的制备及其载流摩擦磨损机理研究[J]. 摩擦学学报, 2018, 38(3): 334–341 doi: 10.16078/j.tribology.2018.03.011

    Wu Xiaoguang, Zhang Hongbo, Yin Jian, et al. Prepartion and current carrying wear properties of PF/CNTs-Cu composites[J]. Tribology, 2018, 38(3): 334–341 doi: 10.16078/j.tribology.2018.03.011
    [10]
    Xu W, Hu R, Li J S, et al. Tribological behavior of CNTs-Cu and graphite-Cu composites with electric current[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 78–84. doi: 10.1016/S1003-6326(11)61143-6
    [11]
    张颖异, 李运刚, 田颖. 高导电高耐磨铜基复合材料的研究进展[J]. 稀有金属与硬质合金, 2011, 39(3): 48–53 doi: 10.3969/j.issn.1004-0536.2011.03.012

    Zhang Yingyi, Li Yungang, Tian Ying. The lastest development of cooper-based composite materials with high wear resistance and electrical conductivity[J]. Rare Metals and Cemented Carbides, 2011, 39(3): 48–53 doi: 10.3969/j.issn.1004-0536.2011.03.012
    [12]
    陈文革, 胡可文, 罗启文. WC/Cu大电流滑动电接触材料的研究[J]. 高压电器, 2008, 44(1): 29–31

    Chen Wenge, Hu Kewen, Luo Qiwen. Study on high current WC/Cu slip electrical contact materials[J]. High Voltage Appararus, 2008, 44(1): 29–31
    [13]
    许玮, 胡锐, 高媛, 等. 碳纳米管增强铜基复合材料的载流摩擦磨损性能研究[J]. 摩擦学学报, 2010, 30(3): 303–307

    Xu Wei, Hu Rui, Gao Yuan, et al. Friction and wear properties of carbon nanotubes reinforced copper matrix composites with and without electric current[J]. Tribology, 2010, 30(3): 303–307
    [14]
    Li J F, Zhang L, Xiao J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3354–3362. doi: 10.1016/S1003-6326(15)63970-X
    [15]
    李文生, 李亚明, 张杰, 等. 银基电接触材料的应用研究及制备工艺[J]. 材料导报, 2011, 25(11): 34–39,55

    Li Wensheng, Li Yaming, Zhang Jie, et al. Progress in the research and application of silver-based electrical contact materials[J]. Materials Review, 2011, 25(11): 34–39,55
    [16]
    Feng Y, Zhang M, Xu Y. Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites[J]. Carbon, 2005, 43(13): 2685–2692. doi: 10.1016/j.carbon.2005.05.029
    [17]
    溥存继, 谢明, 杜文佳, 等. 贵金属基电接触材料的研究进展[J]. 材料导报, 2014, 28(7): 22–25

    Pu Cunji, Xie Ming, Du Wenjia, et al. Research development of precious metal-based electric contact materials[J]. Materials Review, 2014, 28(7): 22–25
    [18]
    Desforges C D. Sintered materials ror electrical contacts[J]. Powder Metallurgy, 1979, 22(3): 138–144. doi: 10.1179/pom.1979.22.3.138
    [19]
    陈永泰, 王松, 谢明, 等. 银基滑动电接触材料的研究进展[J]. 贵金属, 2015, 36(1): 68–74 doi: 10.3969/j.issn.1004-0676.2015.01.019

    Chen Yongtai, Wang Song, Xie Ming, et al. Research progress in silver based sliding electrical contact material[J]. Precious Metals, 2015, 36(1): 68–74 doi: 10.3969/j.issn.1004-0676.2015.01.019
    [20]
    谢明, 王松, 付作鑫, 等. AgSnO2电接触材料研究概述[J]. 电工材料, 2013, (2): 36–39 doi: 10.3969/j.issn.1671-8887.2013.02.008

    Xie Ming, Wang song, Fu Zuoxin, et al. Research of AgSnO2 electrical contact materials[J]. Electrical Engineering Materials, 2013, (2): 36–39 doi: 10.3969/j.issn.1671-8887.2013.02.008
    [21]
    Li S, Feng Y, Yang X T, et al. Structure and formation mechanism of surface film of Ag-MoS2 composite during electrical sliding wear[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1881–1885. doi: 10.1016/S1875-5372(10)60056-2
    [22]
    李庶. 银基复合电接触材料滑动电摩擦磨损性能研究[D]. 合肥: 合肥工业大学, 2009

    Li Shu. Study on electrical sliding friction and wear properties of sliver matix electrical conductive composites[D]. Hefei: Hefei University of Technology, 2009(in Chinese)
    [23]
    Feusier G, P A Mäusli, Gass V. Improved characteristics of slipring assemblies making use of gold on gold metallic contacts[C]. In: 10th European Space Mechanisms and Tribology Symposium, Proceedings. San Sebastian, Spain, 2003, 524.
    [24]
    Xie X L, Zhang L, Xiao J K, et al. Sliding electrical contact behavior of AuAgCu brush on Au platin[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3029–36. doi: 10.1016/S1003-6326(15)63930-9
    [25]
    周怡琳, 章继高. 触点镀金材料的自然腐蚀和电接触特性研究[J]. 电子元件与材料, 2001, 20(4): 11–13 doi: 10.3969/j.issn.1001-2028.2001.04.006

    Zhou Yilin, Zhang Jigao. Natural corrosion and electrical contact property of gold plating on contacts[J]. Electronic Components and Materials, 2001, 20(4): 11–13 doi: 10.3969/j.issn.1001-2028.2001.04.006
    [26]
    葛世超. 镀银触点材料动态电接触特性研究[D]. 北京: 北京邮电大学, 2014

    Ge Shichao. The dynamic preformance of electrical contact pairs with silver plating[D]. Beijing: Beijing University of Posts and Telecommunications, 2014(in Chinese)
    [27]
    Grandin M, Wiklund U. Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite[J]. Wear, 2013, 302(1-2): 1481–1491. doi: 10.1016/j.wear.2013.02.007
    [28]
    Grandin M, Nedfors N, Sundberg J, et al. Ti–Ni–C nanocomposite coatings evaluated in a sliding electrical contact application[J]. Surface and Coatings Technology, 2015, 276: 210–218. doi: 10.1016/j.surfcoat.2015.06.016
    [29]
    Grandin M, Wiklund U. Wear and electrical performance of a slip-ring system with silver–graphite in continuous sliding against PVD coated wires[J]. Wear, 2016, 348-349: 138–147. doi: 10.1016/j.wear.2015.12.002
    [30]
    Lewin E, Andre B, Urbonaite S, et al. Synthesis, structure and properties of Ni-alloyed TiCx-based thin films[J]. Journal of Materials Chemistry, 2010, 20(28): 5950–5960. doi: 10.1039/c0jm00592d
    [31]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
    [32]
    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191. doi: 10.1038/nmat1849
    [33]
    Novoselov K S, fal’ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192–200. doi: 10.1038/nature11458
    [34]
    Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon, 2013, 54: 454–459. doi: 10.1016/j.carbon.2012.11.061
    [35]
    Marchetto D, Feser T, Dienwiebel M. Microscale study of frictional properties of graphene in ultra high vacuum[J]. Friction, 2015, 3(2): 161–169. doi: 10.1007/s40544-015-0080-8
    [36]
    Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen[J]. Carbon, 2013, 59: 167–175. doi: 10.1016/j.carbon.2013.03.006
    [37]
    Xu L, Ma T B, HuY Z, et al. Vanishing stick-slip friction in few-layer graphenes: the thickness effect[J]. Nanotechnology, 2011, 22(28): 285708.
    [38]
    Gahoi A, Wagner S, Bablich A, et al. Contact resistance study of various metal electrodes with CVD graphene[J]. Solid-State Electronics, 2016, 125: 234–239. doi: 10.1016/j.sse.2016.07.008
    [39]
    Song H, Ji L, Li H X, et al. Self-forming oriented layer slip and macroscale super-low friction of graphene[J]. Applied Physics Letters, 2017, 110(7): 073101.
    [40]
    Berman D, Erdemir A, Sumant A V. Graphene as a protective coating and superior lubricant for electrical contacts[J]. Applied Physics Letters, 2014, 105(23): 385–388.
    [41]
    Berman D, Erdemir A, Sumant A V. Graphene: a new emerging lubricant[J]. Materials Today, 2014, 17(1): 31–42. doi: 10.1016/j.mattod.2013.12.003
    [42]
    Uysal M, Akbulut H, Tokur M, et al. Structural and sliding wear properties of Ag/Graphene/WC hybrid nanocomposites produced by electroless co-deposition[J]. Journal of Alloys and Compounds, 2016, 654: 185–195. doi: 10.1016/j.jallcom.2015.08.264
    [43]
    余维延. 电接触用石墨烯(石墨)-银基复合材料的制备及摩擦磨损性能研究[D]. 合肥: 合肥工业大学, 2015

    Yu Weiyan. The preparetion, friction and wear properties of electrical contact graphene(graphite)-silver matrix composites[D]. Hefei: Hefei University of Technology, 2015(in Chinese)
    [44]
    Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear, 2001, 249(5-6): 409–414. doi: 10.1016/S0043-1648(01)00545-2
    [45]
    Ma X C, He G Q, He D H, et al. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J]. Wear, 2008, 265(7-8): 1087–1092. doi: 10.1016/j.wear.2008.02.015
    [46]
    Lancaster J K. A review of the influence of environmental humidity and water on friction, lubrication and wear[J]. Tribology International, 1990, 23(6): 371–389. doi: 10.1016/0301-679X(90)90053-R
    [47]
    Bouchoucha A, Chekroud S, Paulmier D. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel[J]. Applied Surface Science, 2004, 223(4): 330–342. doi: 10.1016/j.apsusc.2003.09.018
    [48]
    Wang Y A, Li J X, Yan Y, et al. Effect of pv factor on sliding friction and wear of copper-impregnated metallized carbon[J]. Wear, 2012, 289: 119–123. doi: 10.1016/j.wear.2012.04.006
    [49]
    董霖, 陈光雄, 周仲荣. 载流摩擦磨损系统研究[J]. 润滑与密封, 2009, 34(7): 102–106 doi: 10.3969/j.issn.0254-0150.2009.07.026

    Dong Lin, Chen Guangxiong, Zhou Zhongrong. Research on the system of friction and wear with electric current[J]. Lubrication Engineering, 2009, 34(7): 102–106 doi: 10.3969/j.issn.0254-0150.2009.07.026
    [50]
    Kalin M, Poljanec D. Influence of the contact parameters and several graphite materials on the tribological behaviour of graphite/copper two-disc electrical contacts[J]. Tribology International, 2018, 126: 192–205. doi: 10.1016/j.triboint.2018.05.024
    [51]
    任万滨, 王鹏, 马晓明, 等. 微动诱发的触点电接触间歇失效现象研究[J]. 摩擦学学报, 2013, 33(4): 382–387 doi: 10.16078/j.tribology.2013.04.015

    Ren Wanbin, Wang Peng, Ma Xiaoming, et al. Intermittency phenomenon of electrical contacts induced by fretting behavior[J]. Tribology, 2013, 33(4): 382–387 doi: 10.16078/j.tribology.2013.04.015
    [52]
    Yasar I, Canakic A, Arslan F. The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current[J]. Tribology International, 2007, 40(9): 1381–1386. doi: 10.1016/j.triboint.2007.03.005
    [53]
    刘军涛. 导电滑环接触材料摩擦磨损特性研究[D]. 大连: 大连理工大学, 2013

    Liu Juntao. Research on the friction and wear characteristics of contact materials for the conductiveslip ring[D]. Dalian: Dalian University of Technology, 2013(in Chinese)
    [54]
    Grandin M, Wiklund U. Influence of mechanical and electrical load on a copper/copper-graphite sliding electrical contact[J]. Tribology International, 2018, 121: 1–9. doi: 10.1016/j.triboint.2018.01.004
    [55]
    Chen G X, Li F X, Dong L, et al. Friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon[J]. Tribology International, 2009, 42(6): 934–939. doi: 10.1016/j.triboint.2008.12.011
    [56]
    徐屹, 凤仪, 王松林, 等. 电流密度对CNTs-Ag-G复合材料接触电压降和磨损性能的影响[J]. 摩擦学学报, 2006, 25(5): 484–488 doi: 10.3321/j.issn:1004-0595.2006.05.018

    Xu Yi, Feng Yi, Wang Songlin, et al. Influence of electrical current on the contact voltage drop and wear properties of CNTs-Ag-G composites[J]. Tribology, 2006, 25(5): 484–488 doi: 10.3321/j.issn:1004-0595.2006.05.018
    [57]
    王一帆. 滑动摩擦条件下电弧对Cu/QCr0.5载流摩擦磨损性能的影响[D]. 洛阳: 河南科技大学, 2015

    Wang Yifan. The arc effects on the current-carrying friction and wear properties of Cu/QCr0.5 couples by the sliding friction[D]. Luoyang: Henan University of Science and Technology, 2015(in Chinese)
    [58]
    Shin W G, Lee S H. An analysis of the main factors on the wear of brushes for automotive small brush-type DC motor[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 37–41. doi: 10.1007/s12206-009-1135-4
    [59]
    Wang Y A, Li J X, Yan Y, et al. Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu-Cr-Zr alloy[J]. Tribology International, 2012, 50: 26–34. doi: 10.1016/j.triboint.2011.12.022
    [60]
    Casstevens J M, Rylander H G, Eliezer Z. Influence of high velocities and high current densities on the friction and wear behavior of copper-graphite brushes[J]. Wear, 2012, 48(1): 121–130.
    [61]
    Du S M, Zhao F, Zhang Y Z. Friction and wear behavior of copper-graphite composite material in high-speed sliding with current[C]. Emerging Materials and Mechanics Applications, Advanced Materials Research Press, 2012, 487: 411-415.
    [62]
    孟令通, 谢鑫林, 李利, 等. Ag-Cu-MoS2复合材料的真空载流磨损性能[J]. 摩擦学学报, 2016, 36(6): 755–761 doi: 10.16078/j.tribology.2016.06.013

    Meng Lingtong, Xie Xinlin, Li Li, et al. Wear Performance of Ag-Cu-MoS2 Composites under Current-Loading in Vacuum[J]. Tribology, 2016, 36(6): 755–761 doi: 10.16078/j.tribology.2016.06.013
    [63]
    田磊. 滑动摩擦条件下电弧的产生及其对载流摩擦磨损性能的影响[D]. 洛阳: 河南科技大学, 2012

    Tian Lei. The arc caused by the sliding friction effects on the tribological properties under electric current[D]. Luoyang: Henan University of Science and Technology, 2012(in Chinese)
    [64]
    Ma W L, Lu J J. Effect of sliding speed on surface modification and tribological behavior of copper-graphite composite[J]. Tribology Letters, 2011, 41(2): 363–370. doi: 10.1007/s11249-010-9718-x
    [65]
    Bucca G, Collina A. Electromechanical interaction between carbon-based pantograph strip and copper contact wire: A heuristic wear model[J]. Tribology International, 2015, 92: 47–56. doi: 10.1016/j.triboint.2015.05.019
    [66]
    Hu Z L, Chen Z H, Xia J T, et al. Effect of PV factor on the wear of carbon brushes for micromotors[J]. Wear, 2008, 265(3-4): 336–340. doi: 10.1016/j.wear.2007.11.003
    [67]
    Hu Z L, Chen Z H, Xia J T. Study on surface film in the wear of electrographite brushes against copper commutators for variable current and humidity[J]. Wear, 2008, 264(1-2): 11–17. doi: 10.1016/j.wear.2007.01.034
    [68]
    Savage R H, Schaefer D L. Vapor lubrication of graphite sliding contacts[J]. Journal of Applied Physics, 1956, 27(2): 136–138. doi: 10.1063/1.1722322
    [69]
    Cho K H, Hong U S, Lee K S, et al. Tribological properties and electrical signal transmission of copper-graphite composites[J]. Tribology Letters, 2007, 27(3): 301–306. doi: 10.1007/s11249-007-9234-9
    [70]
    Grandin M, Wiklund U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials[J]. Wear, 2018, 398: 227–235.
    [71]
    高晓明, 胡明, 孙嘉奕, 等. 润滑材料的空间环境效应[J]. 中国材料进展, 2017, 36(Z1): 481–491,511

    Gao Xiaoming, Hu Ming, Sun Jiayi, et al. Space environment effects on lubricants[J]. Materials China, 2017, 36(Z1): 481–491,511
    [72]
    杨正海. 载流摩擦副的电弧损伤机制研究[D]. 北京: 机械科学研究总院, 2015

    Yang Zhenghai. Research on the arcing damage mechanism of triboelectric pairs[D]. Beijing: China Academy of Machinery Science and Technology, 2015(in Chinese)
    [73]
    胡道春, 孙乐民, 上官宝, 等. 载流摩擦磨损中电弧侵蚀的研究现状[J]. 腐蚀与防护, 2008, 3(3): 163–166 doi: 10.3969/j.issn.1005-748X.2008.03.019

    Hu Daochun, Sun Lemin, Shangguan Bao, et al. Present research status of arc erosion in friction and wear with Current[J]. Corrosion and Protection, 2008, 3(3): 163–166 doi: 10.3969/j.issn.1005-748X.2008.03.019
    [74]
    赵燕霞, 刘敬超, 孙乐民, 等. 载流摩擦磨损中电弧侵蚀的研究现状及趋势[J]. 润滑与密封, 2010, 35(8): 111–113 doi: 10.3969/j.issn.0254-0150.2010.08.028

    Zhao Yanxia, Liu Jingchao, Sun Lemin, et al. Present research status and future trends of arc in friction and wear with current[J]. Lubrication Engineering, 2010, 35(8): 111–113 doi: 10.3969/j.issn.0254-0150.2010.08.028
    [75]
    Chen G X, Yang H J, Zhang W H, et al. Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current[J]. Tribology International, 2013, 61: 88–94. doi: 10.1016/j.triboint.2012.11.020
    [76]
    Usuda T, Ikeda M, Yamashita Y. Prediction of coontact wire wear in high-speed railways[C]. In: Proceedings of the 9th World Congress on Railway Research, 2011.
    [77]
    钱刚, 凤仪, 张学斌, 等. 铜基自润滑电接触复合材料研究综述[J]. 表面技术, 2016, 45(1): 7–12, 27

    Qian Gang, Feng Yi, Zhang Xuebin, et al. Review on research of Cu-based self-lubricating electrical contact composites[J]. Surface Technology, 2016, 45(1): 7–12, 27
    [78]
    Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear, 2009, 266(1-2): 46–59. doi: 10.1016/j.wear.2008.05.006
    [79]
    White J R. Scanning electron microscope evidence for a fatigue mechanism of wear in electrographitic brushes[J]. Wear, 1969, 13(3): 145–150. doi: 10.1016/0043-1648(69)90147-1
    [80]
    Azevedo C R F, Sinatora A. Failure analysis of a railway copper contact strip[J]. Engineering Failure Analysis, 2004, 11(6): 829–841. doi: 10.1016/j.engfailanal.2004.03.003
    [81]
    沈向前, 孙乐民, 张永振. 载流条件下铬青铜/3D碳/碳复合材料摩擦副的摩擦磨损性能[J]. 润滑与密封, 2006, (1): 72–74 doi: 10.3969/j.issn.0254-0150.2006.01.023

    Shen Xiangqian, Sun Lemin, Zhang Yongzhen. Tribology performance of Cu-C/C composites with and without current[J]. Lubrication Engineering, 2006, (1): 72–74 doi: 10.3969/j.issn.0254-0150.2006.01.023
    [82]
    Collina A, Bruni S. Numerical simulation of pantograph-overhead equipment interaction[J]. Vehicle System Dynaics, 2002, 38(4): 261–291. doi: 10.1076/vesd.38.4.261.8286
    [83]
    Wang L J, Zhou X, Wang H J, et al. Anode activity in a high-current vacuum Arc: three-dimensional modeling and simulation[J]. Ieee Transactions on Plasma Science, 2012, 40(9): 2237–2246. doi: 10.1109/TPS.2012.2205590
    [84]
    Kharin S N, IEEE. Mathematical models of heat and mass transfer in electrical contacts[C]. Proceedings of the 2015 Sixty-First Ieee Holm Conference on Electrical Contacts, 2015: 1-21.
    [85]
    董霖, 蒋慧平, 李传喜. 载流磨损中的电弧热散失和对流换热有限元分析[J]. 润滑与密封, 2012, 37(10): 6–9, 15

    Dong Lin, Jiang Huiping, Li Chuanxi. FE simulation research of arc heat loss and convection heat transfer in friction and wear with electric current[J]. Lubrication Engineering, 2012, 37(10): 6–9, 15
    [86]
    尹念, 张执南, 张俊彦. 导电滑环Au涂层摩擦磨损行为的分子动力学模拟[J]. 摩擦学学报, 2018, 38(1): 108–114 doi: 10.16078/j.tribology.2018.01.014

    Yin Nian, Zhang Zhinan, Zhang Junyan. Molecular dynamics simulation of friction and wear behaviors of Au coating for conductive slip ring[J]. Tribology, 2018, 38(1): 108–114 doi: 10.16078/j.tribology.2018.01.014

Catalog

    Article views (1922) PDF downloads (251) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return