Citation: | XIE Bohua, JU Pengfei, JI Li, LI Hongxuan, ZHOU Huidi, CHEN Jianmin. Research Progress on Tribology of Electrical Contact Materials[J]. TRIBOLOGY, 2019, 39(5): 656-668. DOI: 10.16078/j.tribology.2019025 |
[1] |
Holm, Ragnar. Electric contacts: theory and application/-4th ed[M]. Springer, 1979.
|
[2] |
郭凤仪, 陈忠华. 电接触理论及其应用技术[M]. 北京: 中国电力出版社, 2008
Guo Fengyi, Chen Zhonghua. Electric contact theory and its application technology[M]. Beijing: China Electric Power Press, 2008(in Chinese)
|
[3] |
王新平. 空间滑动电接触材料的性能及其寿命增长研究[D]. 长沙: 中南大学, 2013
Wang Xinping. The properties and lifetime growth research of sliding electrical contact materials for space application[D]. Changsha: Central South University, 2013(in Chinese)
|
[4] |
李司山, 黄福祥, 汪振, 等. 电接触材料的研究进展[J]. 材料导报, 2008, 22(S1): 303–306
Li Sishan, Huang Fuxiang, Wang Zhen, et al. Research progress in electric contact materials[J]. Materials Review, 2008, 22(S1): 303–306
|
[5] |
Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear, 1998, 216(2): 179–183. doi: 10.1016/S0043-1648(97)00162-2
|
[6] |
Huang S Y, Feng Y, Liu H J, et al. Electrical sliding friction and wear properties of Cu-MoS2-graphite-WS2 nanotubes composites in air and vacuum conditions[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2013, 560: 685–692. doi: 10.1016/j.msea.2012.10.014
|
[7] |
Rohatgi P K, Ray S, Liu Y. Tribological properties of metal matrix graphite particle composites[J]. Internationl Materials Reviews, 1992, 37(3): 129–149.
|
[8] |
Qian G, Feng Y, Chen Y M, et al. Effect of WS2 addition on electrical sliding wear behaviors of Cu-graphite-WS2 composites[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1986–1994. doi: 10.1016/S1003-6326(15)63807-9
|
[9] |
吴晓光, 张红波, 尹健, 等. PF/CNTs-Cu复合材料的制备及其载流摩擦磨损机理研究[J]. 摩擦学学报, 2018, 38(3): 334–341 doi: 10.16078/j.tribology.2018.03.011
Wu Xiaoguang, Zhang Hongbo, Yin Jian, et al. Prepartion and current carrying wear properties of PF/CNTs-Cu composites[J]. Tribology, 2018, 38(3): 334–341 doi: 10.16078/j.tribology.2018.03.011
|
[10] |
Xu W, Hu R, Li J S, et al. Tribological behavior of CNTs-Cu and graphite-Cu composites with electric current[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 78–84. doi: 10.1016/S1003-6326(11)61143-6
|
[11] |
张颖异, 李运刚, 田颖. 高导电高耐磨铜基复合材料的研究进展[J]. 稀有金属与硬质合金, 2011, 39(3): 48–53 doi: 10.3969/j.issn.1004-0536.2011.03.012
Zhang Yingyi, Li Yungang, Tian Ying. The lastest development of cooper-based composite materials with high wear resistance and electrical conductivity[J]. Rare Metals and Cemented Carbides, 2011, 39(3): 48–53 doi: 10.3969/j.issn.1004-0536.2011.03.012
|
[12] |
陈文革, 胡可文, 罗启文. WC/Cu大电流滑动电接触材料的研究[J]. 高压电器, 2008, 44(1): 29–31
Chen Wenge, Hu Kewen, Luo Qiwen. Study on high current WC/Cu slip electrical contact materials[J]. High Voltage Appararus, 2008, 44(1): 29–31
|
[13] |
许玮, 胡锐, 高媛, 等. 碳纳米管增强铜基复合材料的载流摩擦磨损性能研究[J]. 摩擦学学报, 2010, 30(3): 303–307
Xu Wei, Hu Rui, Gao Yuan, et al. Friction and wear properties of carbon nanotubes reinforced copper matrix composites with and without electric current[J]. Tribology, 2010, 30(3): 303–307
|
[14] |
Li J F, Zhang L, Xiao J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3354–3362. doi: 10.1016/S1003-6326(15)63970-X
|
[15] |
李文生, 李亚明, 张杰, 等. 银基电接触材料的应用研究及制备工艺[J]. 材料导报, 2011, 25(11): 34–39,55
Li Wensheng, Li Yaming, Zhang Jie, et al. Progress in the research and application of silver-based electrical contact materials[J]. Materials Review, 2011, 25(11): 34–39,55
|
[16] |
Feng Y, Zhang M, Xu Y. Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites[J]. Carbon, 2005, 43(13): 2685–2692. doi: 10.1016/j.carbon.2005.05.029
|
[17] |
溥存继, 谢明, 杜文佳, 等. 贵金属基电接触材料的研究进展[J]. 材料导报, 2014, 28(7): 22–25
Pu Cunji, Xie Ming, Du Wenjia, et al. Research development of precious metal-based electric contact materials[J]. Materials Review, 2014, 28(7): 22–25
|
[18] |
Desforges C D. Sintered materials ror electrical contacts[J]. Powder Metallurgy, 1979, 22(3): 138–144. doi: 10.1179/pom.1979.22.3.138
|
[19] |
陈永泰, 王松, 谢明, 等. 银基滑动电接触材料的研究进展[J]. 贵金属, 2015, 36(1): 68–74 doi: 10.3969/j.issn.1004-0676.2015.01.019
Chen Yongtai, Wang Song, Xie Ming, et al. Research progress in silver based sliding electrical contact material[J]. Precious Metals, 2015, 36(1): 68–74 doi: 10.3969/j.issn.1004-0676.2015.01.019
|
[20] |
谢明, 王松, 付作鑫, 等. AgSnO2电接触材料研究概述[J]. 电工材料, 2013, (2): 36–39 doi: 10.3969/j.issn.1671-8887.2013.02.008
Xie Ming, Wang song, Fu Zuoxin, et al. Research of AgSnO2 electrical contact materials[J]. Electrical Engineering Materials, 2013, (2): 36–39 doi: 10.3969/j.issn.1671-8887.2013.02.008
|
[21] |
Li S, Feng Y, Yang X T, et al. Structure and formation mechanism of surface film of Ag-MoS2 composite during electrical sliding wear[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1881–1885. doi: 10.1016/S1875-5372(10)60056-2
|
[22] |
李庶. 银基复合电接触材料滑动电摩擦磨损性能研究[D]. 合肥: 合肥工业大学, 2009
Li Shu. Study on electrical sliding friction and wear properties of sliver matix electrical conductive composites[D]. Hefei: Hefei University of Technology, 2009(in Chinese)
|
[23] |
Feusier G, P A Mäusli, Gass V. Improved characteristics of slipring assemblies making use of gold on gold metallic contacts[C]. In: 10th European Space Mechanisms and Tribology Symposium, Proceedings. San Sebastian, Spain, 2003, 524.
|
[24] |
Xie X L, Zhang L, Xiao J K, et al. Sliding electrical contact behavior of AuAgCu brush on Au platin[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3029–36. doi: 10.1016/S1003-6326(15)63930-9
|
[25] |
周怡琳, 章继高. 触点镀金材料的自然腐蚀和电接触特性研究[J]. 电子元件与材料, 2001, 20(4): 11–13 doi: 10.3969/j.issn.1001-2028.2001.04.006
Zhou Yilin, Zhang Jigao. Natural corrosion and electrical contact property of gold plating on contacts[J]. Electronic Components and Materials, 2001, 20(4): 11–13 doi: 10.3969/j.issn.1001-2028.2001.04.006
|
[26] |
葛世超. 镀银触点材料动态电接触特性研究[D]. 北京: 北京邮电大学, 2014
Ge Shichao. The dynamic preformance of electrical contact pairs with silver plating[D]. Beijing: Beijing University of Posts and Telecommunications, 2014(in Chinese)
|
[27] |
Grandin M, Wiklund U. Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite[J]. Wear, 2013, 302(1-2): 1481–1491. doi: 10.1016/j.wear.2013.02.007
|
[28] |
Grandin M, Nedfors N, Sundberg J, et al. Ti–Ni–C nanocomposite coatings evaluated in a sliding electrical contact application[J]. Surface and Coatings Technology, 2015, 276: 210–218. doi: 10.1016/j.surfcoat.2015.06.016
|
[29] |
Grandin M, Wiklund U. Wear and electrical performance of a slip-ring system with silver–graphite in continuous sliding against PVD coated wires[J]. Wear, 2016, 348-349: 138–147. doi: 10.1016/j.wear.2015.12.002
|
[30] |
Lewin E, Andre B, Urbonaite S, et al. Synthesis, structure and properties of Ni-alloyed TiCx-based thin films[J]. Journal of Materials Chemistry, 2010, 20(28): 5950–5960. doi: 10.1039/c0jm00592d
|
[31] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896
|
[32] |
Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191. doi: 10.1038/nmat1849
|
[33] |
Novoselov K S, fal’ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192–200. doi: 10.1038/nature11458
|
[34] |
Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon, 2013, 54: 454–459. doi: 10.1016/j.carbon.2012.11.061
|
[35] |
Marchetto D, Feser T, Dienwiebel M. Microscale study of frictional properties of graphene in ultra high vacuum[J]. Friction, 2015, 3(2): 161–169. doi: 10.1007/s40544-015-0080-8
|
[36] |
Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen[J]. Carbon, 2013, 59: 167–175. doi: 10.1016/j.carbon.2013.03.006
|
[37] |
Xu L, Ma T B, HuY Z, et al. Vanishing stick-slip friction in few-layer graphenes: the thickness effect[J]. Nanotechnology, 2011, 22(28): 285708.
|
[38] |
Gahoi A, Wagner S, Bablich A, et al. Contact resistance study of various metal electrodes with CVD graphene[J]. Solid-State Electronics, 2016, 125: 234–239. doi: 10.1016/j.sse.2016.07.008
|
[39] |
Song H, Ji L, Li H X, et al. Self-forming oriented layer slip and macroscale super-low friction of graphene[J]. Applied Physics Letters, 2017, 110(7): 073101.
|
[40] |
Berman D, Erdemir A, Sumant A V. Graphene as a protective coating and superior lubricant for electrical contacts[J]. Applied Physics Letters, 2014, 105(23): 385–388.
|
[41] |
Berman D, Erdemir A, Sumant A V. Graphene: a new emerging lubricant[J]. Materials Today, 2014, 17(1): 31–42. doi: 10.1016/j.mattod.2013.12.003
|
[42] |
Uysal M, Akbulut H, Tokur M, et al. Structural and sliding wear properties of Ag/Graphene/WC hybrid nanocomposites produced by electroless co-deposition[J]. Journal of Alloys and Compounds, 2016, 654: 185–195. doi: 10.1016/j.jallcom.2015.08.264
|
[43] |
余维延. 电接触用石墨烯(石墨)-银基复合材料的制备及摩擦磨损性能研究[D]. 合肥: 合肥工业大学, 2015
Yu Weiyan. The preparetion, friction and wear properties of electrical contact graphene(graphite)-silver matrix composites[D]. Hefei: Hefei University of Technology, 2015(in Chinese)
|
[44] |
Zhao H, Barber G C, Liu J. Friction and wear in high speed sliding with and without electrical current[J]. Wear, 2001, 249(5-6): 409–414. doi: 10.1016/S0043-1648(01)00545-2
|
[45] |
Ma X C, He G Q, He D H, et al. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J]. Wear, 2008, 265(7-8): 1087–1092. doi: 10.1016/j.wear.2008.02.015
|
[46] |
Lancaster J K. A review of the influence of environmental humidity and water on friction, lubrication and wear[J]. Tribology International, 1990, 23(6): 371–389. doi: 10.1016/0301-679X(90)90053-R
|
[47] |
Bouchoucha A, Chekroud S, Paulmier D. Influence of the electrical sliding speed on friction and wear processes in an electrical contact copper-stainless steel[J]. Applied Surface Science, 2004, 223(4): 330–342. doi: 10.1016/j.apsusc.2003.09.018
|
[48] |
Wang Y A, Li J X, Yan Y, et al. Effect of pv factor on sliding friction and wear of copper-impregnated metallized carbon[J]. Wear, 2012, 289: 119–123. doi: 10.1016/j.wear.2012.04.006
|
[49] |
董霖, 陈光雄, 周仲荣. 载流摩擦磨损系统研究[J]. 润滑与密封, 2009, 34(7): 102–106 doi: 10.3969/j.issn.0254-0150.2009.07.026
Dong Lin, Chen Guangxiong, Zhou Zhongrong. Research on the system of friction and wear with electric current[J]. Lubrication Engineering, 2009, 34(7): 102–106 doi: 10.3969/j.issn.0254-0150.2009.07.026
|
[50] |
Kalin M, Poljanec D. Influence of the contact parameters and several graphite materials on the tribological behaviour of graphite/copper two-disc electrical contacts[J]. Tribology International, 2018, 126: 192–205. doi: 10.1016/j.triboint.2018.05.024
|
[51] |
任万滨, 王鹏, 马晓明, 等. 微动诱发的触点电接触间歇失效现象研究[J]. 摩擦学学报, 2013, 33(4): 382–387 doi: 10.16078/j.tribology.2013.04.015
Ren Wanbin, Wang Peng, Ma Xiaoming, et al. Intermittency phenomenon of electrical contacts induced by fretting behavior[J]. Tribology, 2013, 33(4): 382–387 doi: 10.16078/j.tribology.2013.04.015
|
[52] |
Yasar I, Canakic A, Arslan F. The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current[J]. Tribology International, 2007, 40(9): 1381–1386. doi: 10.1016/j.triboint.2007.03.005
|
[53] |
刘军涛. 导电滑环接触材料摩擦磨损特性研究[D]. 大连: 大连理工大学, 2013
Liu Juntao. Research on the friction and wear characteristics of contact materials for the conductiveslip ring[D]. Dalian: Dalian University of Technology, 2013(in Chinese)
|
[54] |
Grandin M, Wiklund U. Influence of mechanical and electrical load on a copper/copper-graphite sliding electrical contact[J]. Tribology International, 2018, 121: 1–9. doi: 10.1016/j.triboint.2018.01.004
|
[55] |
Chen G X, Li F X, Dong L, et al. Friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon[J]. Tribology International, 2009, 42(6): 934–939. doi: 10.1016/j.triboint.2008.12.011
|
[56] |
徐屹, 凤仪, 王松林, 等. 电流密度对CNTs-Ag-G复合材料接触电压降和磨损性能的影响[J]. 摩擦学学报, 2006, 25(5): 484–488 doi: 10.3321/j.issn:1004-0595.2006.05.018
Xu Yi, Feng Yi, Wang Songlin, et al. Influence of electrical current on the contact voltage drop and wear properties of CNTs-Ag-G composites[J]. Tribology, 2006, 25(5): 484–488 doi: 10.3321/j.issn:1004-0595.2006.05.018
|
[57] |
王一帆. 滑动摩擦条件下电弧对Cu/QCr0.5载流摩擦磨损性能的影响[D]. 洛阳: 河南科技大学, 2015
Wang Yifan. The arc effects on the current-carrying friction and wear properties of Cu/QCr0.5 couples by the sliding friction[D]. Luoyang: Henan University of Science and Technology, 2015(in Chinese)
|
[58] |
Shin W G, Lee S H. An analysis of the main factors on the wear of brushes for automotive small brush-type DC motor[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 37–41. doi: 10.1007/s12206-009-1135-4
|
[59] |
Wang Y A, Li J X, Yan Y, et al. Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu-Cr-Zr alloy[J]. Tribology International, 2012, 50: 26–34. doi: 10.1016/j.triboint.2011.12.022
|
[60] |
Casstevens J M, Rylander H G, Eliezer Z. Influence of high velocities and high current densities on the friction and wear behavior of copper-graphite brushes[J]. Wear, 2012, 48(1): 121–130.
|
[61] |
Du S M, Zhao F, Zhang Y Z. Friction and wear behavior of copper-graphite composite material in high-speed sliding with current[C]. Emerging Materials and Mechanics Applications, Advanced Materials Research Press, 2012, 487: 411-415.
|
[62] |
孟令通, 谢鑫林, 李利, 等. Ag-Cu-MoS2复合材料的真空载流磨损性能[J]. 摩擦学学报, 2016, 36(6): 755–761 doi: 10.16078/j.tribology.2016.06.013
Meng Lingtong, Xie Xinlin, Li Li, et al. Wear Performance of Ag-Cu-MoS2 Composites under Current-Loading in Vacuum[J]. Tribology, 2016, 36(6): 755–761 doi: 10.16078/j.tribology.2016.06.013
|
[63] |
田磊. 滑动摩擦条件下电弧的产生及其对载流摩擦磨损性能的影响[D]. 洛阳: 河南科技大学, 2012
Tian Lei. The arc caused by the sliding friction effects on the tribological properties under electric current[D]. Luoyang: Henan University of Science and Technology, 2012(in Chinese)
|
[64] |
Ma W L, Lu J J. Effect of sliding speed on surface modification and tribological behavior of copper-graphite composite[J]. Tribology Letters, 2011, 41(2): 363–370. doi: 10.1007/s11249-010-9718-x
|
[65] |
Bucca G, Collina A. Electromechanical interaction between carbon-based pantograph strip and copper contact wire: A heuristic wear model[J]. Tribology International, 2015, 92: 47–56. doi: 10.1016/j.triboint.2015.05.019
|
[66] |
Hu Z L, Chen Z H, Xia J T, et al. Effect of PV factor on the wear of carbon brushes for micromotors[J]. Wear, 2008, 265(3-4): 336–340. doi: 10.1016/j.wear.2007.11.003
|
[67] |
Hu Z L, Chen Z H, Xia J T. Study on surface film in the wear of electrographite brushes against copper commutators for variable current and humidity[J]. Wear, 2008, 264(1-2): 11–17. doi: 10.1016/j.wear.2007.01.034
|
[68] |
Savage R H, Schaefer D L. Vapor lubrication of graphite sliding contacts[J]. Journal of Applied Physics, 1956, 27(2): 136–138. doi: 10.1063/1.1722322
|
[69] |
Cho K H, Hong U S, Lee K S, et al. Tribological properties and electrical signal transmission of copper-graphite composites[J]. Tribology Letters, 2007, 27(3): 301–306. doi: 10.1007/s11249-007-9234-9
|
[70] |
Grandin M, Wiklund U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials[J]. Wear, 2018, 398: 227–235.
|
[71] |
高晓明, 胡明, 孙嘉奕, 等. 润滑材料的空间环境效应[J]. 中国材料进展, 2017, 36(Z1): 481–491,511
Gao Xiaoming, Hu Ming, Sun Jiayi, et al. Space environment effects on lubricants[J]. Materials China, 2017, 36(Z1): 481–491,511
|
[72] |
杨正海. 载流摩擦副的电弧损伤机制研究[D]. 北京: 机械科学研究总院, 2015
Yang Zhenghai. Research on the arcing damage mechanism of triboelectric pairs[D]. Beijing: China Academy of Machinery Science and Technology, 2015(in Chinese)
|
[73] |
胡道春, 孙乐民, 上官宝, 等. 载流摩擦磨损中电弧侵蚀的研究现状[J]. 腐蚀与防护, 2008, 3(3): 163–166 doi: 10.3969/j.issn.1005-748X.2008.03.019
Hu Daochun, Sun Lemin, Shangguan Bao, et al. Present research status of arc erosion in friction and wear with Current[J]. Corrosion and Protection, 2008, 3(3): 163–166 doi: 10.3969/j.issn.1005-748X.2008.03.019
|
[74] |
赵燕霞, 刘敬超, 孙乐民, 等. 载流摩擦磨损中电弧侵蚀的研究现状及趋势[J]. 润滑与密封, 2010, 35(8): 111–113 doi: 10.3969/j.issn.0254-0150.2010.08.028
Zhao Yanxia, Liu Jingchao, Sun Lemin, et al. Present research status and future trends of arc in friction and wear with current[J]. Lubrication Engineering, 2010, 35(8): 111–113 doi: 10.3969/j.issn.0254-0150.2010.08.028
|
[75] |
Chen G X, Yang H J, Zhang W H, et al. Experimental study on arc ablation occurring in a contact strip rubbing against a contact wire with electrical current[J]. Tribology International, 2013, 61: 88–94. doi: 10.1016/j.triboint.2012.11.020
|
[76] |
Usuda T, Ikeda M, Yamashita Y. Prediction of coontact wire wear in high-speed railways[C]. In: Proceedings of the 9th World Congress on Railway Research, 2011.
|
[77] |
钱刚, 凤仪, 张学斌, 等. 铜基自润滑电接触复合材料研究综述[J]. 表面技术, 2016, 45(1): 7–12, 27
Qian Gang, Feng Yi, Zhang Xuebin, et al. Review on research of Cu-based self-lubricating electrical contact composites[J]. Surface Technology, 2016, 45(1): 7–12, 27
|
[78] |
Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear, 2009, 266(1-2): 46–59. doi: 10.1016/j.wear.2008.05.006
|
[79] |
White J R. Scanning electron microscope evidence for a fatigue mechanism of wear in electrographitic brushes[J]. Wear, 1969, 13(3): 145–150. doi: 10.1016/0043-1648(69)90147-1
|
[80] |
Azevedo C R F, Sinatora A. Failure analysis of a railway copper contact strip[J]. Engineering Failure Analysis, 2004, 11(6): 829–841. doi: 10.1016/j.engfailanal.2004.03.003
|
[81] |
沈向前, 孙乐民, 张永振. 载流条件下铬青铜/3D碳/碳复合材料摩擦副的摩擦磨损性能[J]. 润滑与密封, 2006, (1): 72–74 doi: 10.3969/j.issn.0254-0150.2006.01.023
Shen Xiangqian, Sun Lemin, Zhang Yongzhen. Tribology performance of Cu-C/C composites with and without current[J]. Lubrication Engineering, 2006, (1): 72–74 doi: 10.3969/j.issn.0254-0150.2006.01.023
|
[82] |
Collina A, Bruni S. Numerical simulation of pantograph-overhead equipment interaction[J]. Vehicle System Dynaics, 2002, 38(4): 261–291. doi: 10.1076/vesd.38.4.261.8286
|
[83] |
Wang L J, Zhou X, Wang H J, et al. Anode activity in a high-current vacuum Arc: three-dimensional modeling and simulation[J]. Ieee Transactions on Plasma Science, 2012, 40(9): 2237–2246. doi: 10.1109/TPS.2012.2205590
|
[84] |
Kharin S N, IEEE. Mathematical models of heat and mass transfer in electrical contacts[C]. Proceedings of the 2015 Sixty-First Ieee Holm Conference on Electrical Contacts, 2015: 1-21.
|
[85] |
董霖, 蒋慧平, 李传喜. 载流磨损中的电弧热散失和对流换热有限元分析[J]. 润滑与密封, 2012, 37(10): 6–9, 15
Dong Lin, Jiang Huiping, Li Chuanxi. FE simulation research of arc heat loss and convection heat transfer in friction and wear with electric current[J]. Lubrication Engineering, 2012, 37(10): 6–9, 15
|
[86] |
尹念, 张执南, 张俊彦. 导电滑环Au涂层摩擦磨损行为的分子动力学模拟[J]. 摩擦学学报, 2018, 38(1): 108–114 doi: 10.16078/j.tribology.2018.01.014
Yin Nian, Zhang Zhinan, Zhang Junyan. Molecular dynamics simulation of friction and wear behaviors of Au coating for conductive slip ring[J]. Tribology, 2018, 38(1): 108–114 doi: 10.16078/j.tribology.2018.01.014
|