Citation: | BA Zhaowen, HUANG Guowei, QIAO Dan, FENG Dapeng. Preparation and Tribological Performance of RGO/MoS2 as Composite Nano-Additives[J]. TRIBOLOGY, 2019, 39(2): 140-149. DOI: 10.16078/j.tribology.2018154 |
[1] |
Geim A, Novoselov K. The rise of graphene[J]. Nature Material, 2007, 6: 183–187. doi: 10.1038/nmat1849
|
[2] |
Novoselov K, Fal V, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192–200. doi: 10.1038/nature11458
|
[3] |
Han J H, Lee S, Cheon J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals[J]. Chemical Society Reviews, 2013, 42(7): 2581–2591. doi: 10.1039/C2CS35386E
|
[4] |
Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2014, 14: 48–55.
|
[5] |
Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356–1359. doi: 10.1126/science.1254227
|
[6] |
Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974): 76–80. doi: 10.1126/science.1184167
|
[7] |
Sandoz E J, Tertuliano O A, Terrell E J. An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings[J]. Carbon, 2012, 50(11): 4078–4084. doi: 10.1016/j.carbon.2012.04.055
|
[8] |
Cui W, Xu S, Yan B, et al. Triphasic 2d materials by vertically stacking laterally heterostructured 2H-/1T-MoS2 on graphene for enhanced photoresponse[J]. Advanced Electronic Materials, 2017, 3(7): 1700024–1700031. doi: 10.1002/aelm.201700024
|
[9] |
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6: 147–150. doi: 10.1038/nnano.2010.279
|
[10] |
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372–377. doi: 10.1038/nnano.2014.35
|
[11] |
Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107–131. doi: 10.1016/j.nanoen.2011.11.001
|
[12] |
胡坤宏, 徐勇, 徐玉福, 等. 不同形态的二硫化钼润滑剂在离子液体中的摩擦学性能[J]. 摩擦学学报[J], 2015, 35(2): 167–175
Hu KunHong, Xu Yong, Xu Yufu, et al. Tribological properties of MoS2 lubricants with different morphologies in an ionic liquid[J]. Tribology, 2015, 35(2): 167–175
|
[13] |
Grossiord C, Varlot K, Martin JM, et al. MoS2 single sheet lubrication by molybdenum dithiocarbamate[J]. Tribology International, 1998, 31(12): 737–743. doi: 10.1016/S0301-679X(98)00094-2
|
[14] |
Chen Z, Liu X, Liu Y, et al. Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants[J]. Science Report, 2015, 5: 12869–128875. doi: 10.1038/srep12869
|
[15] |
Rosentsveig R, Gorodnev A, Feuerstein N, et al. Fullerene-like MoS2 nanoparticles and their tribological behavior[J]. Tribology Letters, 2009, 36(2): 175–182. doi: 10.1007/s11249-009-9472-0
|
[16] |
沃恒洲, 胡坤宏, 胡献国. 纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J]. 摩擦学学报, 2004, 24(1): 33–37 doi: 10.3321/j.issn:1004-0595.2004.01.008
Wo Hengzhou, Hu Kunhong, Hu Xianguo. Tribological properties of MoS2 nanoparticles as additive in a machine oil[J]. Tribology, 2004, 24(1): 33–37 doi: 10.3321/j.issn:1004-0595.2004.01.008
|
[17] |
白鸽玲, 吴壮志. 二硫化钼纳米球的制备及其摩擦性能研究[J]. 润滑与密封, 2013, 38(4): 93–96 doi: 10.3969/j.issn.0254-0150.2013.04.021
Bai Geling, Wu Zhuangzhi. Synthesisand tribological properties of MoS2 nanospheres[J]. Lubrication Engineering, 2013, 38(4): 93–96 doi: 10.3969/j.issn.0254-0150.2013.04.021
|
[18] |
Windom B, Sawyer W, Hahn D. A raman spectroscopic study of MoS2 and MoO3: applications to tribological systems[J]. Tribology Letters, 2011, 42(3): 301–310. doi: 10.1007/s11249-011-9774-x
|
[19] |
Fan X, Wang L. High-performance lubricant additives based on modified graphene oxide by ionic liquids[J]. Journal of Colloid and Interface Science, 2015, 452: 98–108. doi: 10.1016/j.jcis.2015.04.025
|
[20] |
Lin J, Wang L, Chen G. Modification of graphene platelets and their tribological properties as a lubricant additive[J]. Tribology Letters, 2011, 41(1): 209–215. doi: 10.1007/s11249-010-9702-5
|
[21] |
Zheng X, Xu Y, Geng J, et al. Tribological behavior of Fe3O4/MoS2 nanocomposites additives in aqueous and oil phase media[J]. Tribology International, 2016, 102: 79–87. doi: 10.1016/j.triboint.2016.05.024
|
[22] |
Song H, Jia X, Li N, et al. Synthesis of α-Fe2O3 nanorod/graphene oxide composites and their tribological properties[J]. Journal of Materials Chemistry, 2012, 22(3): 895–902. doi: 10.1039/C1JM13740A
|
[23] |
Wang L F, Ma T B, Hu Y Z, et al. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: A first-principles study[J]. Nanotechnology, 2014, 25(38): 385701. doi: 10.1088/0957-4484/25/38/385701
|
[24] |
Hou K, Wang J, Yang Z, et al. One-pot synthesis of reduced graphene oxide/molybdenum disulfide heterostructures with intrinsic incommensurateness for enhanced lubricating properties[J]. Carbon, 2017, 115: 83–94. doi: 10.1016/j.carbon.2016.12.089
|
[25] |
Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806–4814. doi: 10.1021/nn1006368
|
[26] |
Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906–3924. doi: 10.1002/adma.201001068
|
[27] |
Lake JR, Cheng A, Selverston S, et al. Graphene metal oxide composite supercapacitor electrodes[J]. Journal of Vacuum Science & Technology B, 2012, 30(3): 03D118.
|
[28] |
康怡然, 蔡锋, 陈宏源, 等. 碳纳米管/石墨烯复合结构及其电化学电容行为[J]. 化学进展, 2014, 26(9): 1562–1569
Kong Yiran, Cai Feng, Chen Hongyuan, et al. Carbon nanotube/graphene hybrid nanostructures and their application in supercapacitors[J]. Progress in Chemistry, 2014, 26(9): 1562–1569
|
[29] |
Li B, Zhou L, Wu D, et al. Photochemical chlorination of graphene[J]. ACS Nano, 2011, 5(7): 5957–5961. doi: 10.1021/nn201731t
|
[30] |
Liu D, Xu W, Liu Q, et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing swnt film: Synthesis, characterization and electrocatalytic application[J]. Nano Research, 2016, 9(7): 2079–2087. doi: 10.1007/s12274-016-1098-6
|
[31] |
Mestl G, Ruiz P, Delmon B, et al. Oxygen-exchange properties of MoO3: an in situ Raman spectroscopy study[J]. Journal of Physical Chemistry, 1994, 98: 11269–11275. doi: 10.1021/j100095a007
|
[32] |
Xie J, Zhang J, Li S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881–17888. doi: 10.1021/ja408329q
|
[33] |
Holzwarth U, Gibson N. The scherrer equation versus the debye-scherrer equation[J]. Nature Nanotechnology, 2011, 6: 534–341. doi: 10.1038/nnano.2011.145
|
[34] |
Lukowski M, Daniel A, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10274–10277. doi: 10.1021/ja404523s
|
[35] |
Han Y, Qiao D, Guo Y, et al. influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG[J]. Tribology Letters, 2016, 64(2): 3–12.
|
[36] |
Zhao J, He Y, Wang Y, et al. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications[J]. Tribology International, 2016, 97: 14–20. doi: 10.1016/j.triboint.2015.12.006
|
[37] |
Gong K, Wu X, Zhao G, et al. Nanosized MoS2 deposited on graphene as lubricant additive in polyalkylene glycol for steel/steel contact at elevated temperature[J]. Tribology International, 2017, 110: 1–7. doi: 10.1016/j.triboint.2017.01.024
|
1. |
晁昀暄,戴乐阳,魏钰坤,王永坚,杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能. 材料导报. 2024(02): 238-244 .
![]() | |
2. |
王小勇,张慧峰,郭佳毫,姜宇,姜雨辰. 重载变速冲击工况下MoDDP/CaB复合润滑油添加剂的润滑性能. 中国表面工程. 2024(02): 248-259 .
![]() | |
3. |
王伟奇,陈欣仪,赵旋,林鑫,田广科,郭月霞,王锐东,令晓明. 闭合场-磁控溅射制备Ti掺杂MoS_2复合薄膜及其摩擦学性能研究. 润滑与密封. 2024(08): 28-35 .
![]() | |
4. |
龚卓洋. 石墨烯及石墨烯复合纳米材料在润滑领域中的应用. 合成润滑材料. 2024(03): 43-47 .
![]() | |
5. |
王兰美,钱建华,张丹,李君华. CuS/ZnS纳米复合材料的制备及其作为润滑油添加剂的摩擦学行为研究. 化学研究与应用. 2024(11): 2536-2542 .
![]() | |
6. |
王茹,李红轩,吉利,刘晓红,孙初锋. MoS_2基复合薄膜真空高温摩擦学性能及其机理研究. 摩擦学学报. 2023(01): 73-82 .
![]() | |
7. |
常伟豪,丁隆新,刘毅,李传强,袁小亚,郑旭煦. 石墨烯/MoS_2复合材料的制备及其摩擦学和电化学性能研究进展. 化工新型材料. 2023(03): 7-13+19 .
![]() | |
8. |
何彦,王优强,莫君,赵涛,朱玉玲,李梦杰. PAO3基磁性流体的摩擦学性能研究. 摩擦学学报. 2023(08): 855-867 .
![]() | |
9. |
Liping Xiong,Xiaoya Sun,Qi Chen,Mengyue Zhu,Zhongyi He,Lili Li. Tribochemistry of alcohols and their tribological properties:a review. Frontiers of Materials Science. 2023(01): 113-130 .
![]() |
|
10. |
秦建,刘天霞,王志燕,王建,王继寒. 石墨烯基复合材料润滑添加剂的应用研究进展. 宁夏工程技术. 2022(01): 92-96 .
![]() | |
11. |
夏延秋,王远慧,冯欣,杨洪涛. 二硫化钼/碳纳米管对聚脲润滑脂的摩擦学性能影响研究. 润滑油. 2022(02): 28-31 .
![]() | |
12. |
姜雨辰,唐玮,彭玉兴. 纳米CaB/MoDDP复合润滑油添加剂的摩擦学性能. 哈尔滨工业大学学报. 2022(07): 111-119 .
![]() | |
13. |
秦建,刘天霞,王建,卢星. 油酸改性石墨烯/二硫化钼复合材料润滑添加剂的制备及摩擦学特性. 化工进展. 2022(09): 4973-4985 .
![]() | |
14. |
黎明登,杨洋,裴露露,刘晓红,刘红妹. 磁控溅射NbSe_2和MoS_2薄膜不同湿度下的摩擦学行为. 摩擦学学报. 2022(05): 925-934 .
![]() | |
15. |
程蓓,李迎春,邱明,谷守旭,许艳雷. 石墨烯/MoS_2复合涂层多环境下的摩擦学性能. 润滑与密封. 2021(01): 66-73 .
![]() | |
16. |
袁志华,郭浩然,袁博,张爱黎. 耐高温五聚脲润滑脂的制备及其性能. 石油学报(石油加工). 2021(05): 1182-1192 .
![]() | |
17. |
郭竟尧,侯显斌,魏钰坤,戴乐阳,廖海峰,孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能. 材料导报. 2021(20): 20011-20015 .
![]() | |
18. |
张博,王建华. 舰用汽轮机油摩擦学性能不同评价方法和条件的相关性. 石油炼制与化工. 2021(11): 70-77 .
![]() | |
19. |
董春萌,高晓明,余兵,姜栋,胡明,王德生,翁立军,孙嘉奕. 水浴对MoS_2薄膜结构及摩擦学性能影响的研究. 摩擦学学报. 2020(02): 166-174 .
![]() | |
20. |
Wu Bo,Zhang Qiangqiang,Song Hui,Yang Bingxun,Tian Ming,Hu Xianguo. Preparation, Dispersion and Tribological Properties of Oleophilic Lanthanum Hydroxide/Graphene Oxide Nanocomposites. China Petroleum Processing & Petrochemical Technology. 2020(02): 111-121 .
![]() |
|
21. |
胡华民,李涛,张挺,刘建华,蔡振兵,莫继良,彭金方,朱旻昊. 横向交变载荷下TiCN/MoS_2涂层螺栓的防松性能研究. 摩擦学学报. 2020(05): 569-578 .
![]() |