ISSN   1004-0595

CN  62-1224/O4

Advanced Search
Peng PENG, Jiugen WANG. Contact and Stick Slip of Finite Length Roller[J]. TRIBOLOGY, 2019, 39(1): 57-64. DOI: 10.16078/j.tribology.2018010
Citation: Peng PENG, Jiugen WANG. Contact and Stick Slip of Finite Length Roller[J]. TRIBOLOGY, 2019, 39(1): 57-64. DOI: 10.16078/j.tribology.2018010

Contact and Stick Slip of Finite Length Roller

More Information
  • Corresponding author:

    Jiugen WANG, E-mail: me_jg@zju.edu.cn, Tel:+86-13857146979

  • Received Date: April 18, 2018
  • Revised Date: September 26, 2018
  • Accepted Date: October 11, 2018
  • Available Online: January 30, 2019
  • Published Date: December 31, 2018
  • Finite length contact problems widely exist in gear transmission and roller bearings, and the stress concentration at the two ends of the rollers significantly affects the fatigue life of mechanical elements. This paper presented a numerical model to simulate the contact behaviors of finite line contact. The numerical model is based on the matrix formulation and overlapping concept. The solution of the model is then obtained with conjugate gradient method and the fast Fourier transform. Furthermore, this approach is extended to investigate the influences of the free edges and tangential force on stick slip in the contact zone. The results demonstrate that when the two rollers in contact are under the coincident end condition, the stick zone shrink at the free ends. Moreover, the increase of tangential force enhances the shear traction in the slip region nearby the two free edges.
  • loading
  • [1]
    张帆, 王文中, 赵自强, 等. 渐开线直齿轮弹流润滑条件下的多轴疲劳寿命预估[J]. 摩擦学学报, 2017, 37(2): 263–269 doi: 10.16078/j.tribology.2017.02.017

    Zhang Fan, Wang Wenzhong, Zhao Ziqiang, et al. Multi-Axial fatigue lifetime model for involute gear under EHL lubrication conditions[J]. Tribology, 2017, 37(2): 263–269 doi: 10.16078/j.tribology.2017.02.017
    [2]
    董国忠, 张辉, 李月, 等. 混合弹流润滑系统的建模与摩擦学特性研究[J]. 西安交通大学学报, 2018, 52(1): 107–114

    Dong Guozhong, Zhang Hui, Li Yue, et al. A mixed elasto-hydrodynamic lubrication model for studying tribological properties of rough surfaces[J]. Journal of Xi’an Jiaotong University, 2018, 52(1): 107–114
    [3]
    戴翎, 蒲伟, 田兴, 等. 混合润滑下短齿啮合对行星齿轮接触疲劳的影响[J]. 摩擦学学报, 2018, 38(2): 121–128 doi: 10.16078/j.tribology.2018.02.001

    Dai Ling, Pu Wei, Tian Xing, et al. Effect of short teeth on contact fatigue in planetary gears under mixed lubrication[J]. Tribology, 2018, 38(2): 121–128 doi: 10.16078/j.tribology.2018.02.001
    [4]
    李直, 陈剑, 沈锦龙, 等. 线接触滚/滑状态下表面形貌的弹性变形研究[J]. 机械工程学报, 2018, 54(5): 142–148

    Li Zhi, Chen Jian, Shen Jinlong, et al. Elastic deformation of surface topography under line contact and sliding-rolling conditions[J]. Journal of Mechanical Engineering, 2018, 54(5): 142–148
    [5]
    杨万友, 周青华, 王家序, 等. 接触载荷作用下非均质材料表层应力集中分析[J]. 中南大学学报(自然科学版), 2018, 49(5): 1095–1102

    Yang Wanyou, Zhou Qinghua, Wang Jiaxu, et al. Subsurface stress concentration of heterogeneous material under contact loading[J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1095–1102
    [6]
    Hetényi M. A general solution for the elastic quarter space[J]. Journal of Applied Mechanics, 1970, 37(1): 70–76
    [7]
    Keer L M, Lee J C, Mura T. Hetényi’s elastic quarter space problem revisited[J]. International Journal of Solids & Structures, 1983, 19(6): 497–508
    [8]
    Keer L M, Lee J C, Mura T. A contact problem for the elastic quarter space[J]. International Journal of Solids & Structures, 1984, 20(5): 513–524
    [9]
    Yu C C, Keer L M, Moran B. Elastic-plastic rolling-sliding contact on a quarter space[J]. Wear, 1996, 191(1-2): 219–225
    [10]
    Zhang Z M, Wang W, Wong P L. An explicit solution for the elastic quarter-space problem in matrix formulation[J]. International Journal of Solids & Structures, 2013, 50(6): 976–980
    [11]
    Zhang H B, Wang W Z, Zhang S G, et al. Modeling of elastic finite-length space rolling-sliding contact problem[J]. Tribology International, 2016, 113: 224–237
    [12]
    Zhang H B, Wang W Z, Zhang S G, et al. Modeling of finite-length line contact problem with consideration of two free-end surfaces[J]. Journal of Tribology, 2016, 138(21402-1): 1–10
    [13]
    Guenfoud S, Bosakov S V, Laefer D F. A Ritz’s method based solution for the contact problem of a deformable rectangular plate on an elastic quarter-space[J]. International Journal of Solids & Structures, 2010, 47(14-15): 1822–1829
    [14]
    Guilbault R. A fast correction for elastic quarter-space applied to 3D modeling of edge contact problems[J]. Journal of Tribology, 2011, 133(3): 31402
    [15]
    Najjari M, Guilbault R. Modeling the edge contact effect of finite contact lines on subsurface stresses[J]. Tribology International, 2014, 77(77): 78–85
    [16]
    Reynolds O. On rolling-friction[J]. Journal of Applied Physics, 1949, 166(10): 155–174
    [17]
    Carter F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London, 1926, 112(760): 151–157
    [18]
    Nowell D, Hills D A, Sackfield A. Contact of dissimilar elastic cylinders under normal and tangential loading[J]. Journal of the Mechanics and Physics of Solids, 1988, 36(1): 59–75
    [19]
    Kalker J J. The computation of three-dimensional rolling contact with dry friction[J]. International Journal for Numerical Methods in Engineering, 1979, 14(9): 1293–1307
    [20]
    Chen W W, Wang Q J. A numerical model for the point contact of dissimilar materials considering tangential tractions[J]. Mechanics of Materials, 2008, 40(11): 936–948
    [21]
    Wang Z J, Jin X Q, Keer L M, et al. A numerical approach for analyzing three-dimensional steady-state rolling contact including creep using a fast semi-analytical method[J]. Tribology Transactions, 2012, 55(4): 446–457
    [22]
    Polonsky I A, Keer L M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques[J]. Wear, 1999, 231(2): 206–219
    [23]
    Liu S, Wang Q, Liu G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses[J]. Wear, 2000, 243(1): 101–111
    [24]
    Love A E H. The stress produced in a semi-infinite solid by pressure on part of the boundary[J]. Philosophical Transactions of the Royal Society of London, 1929, 228(659-669): 377–420
    [25]
    Johnson K L. Contact mechanics[M]. London: Cambridge University Press, 1985.

Catalog

    Figures(10)

    Article views (1393) PDF downloads (74) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return