ISSN   1004-0595

CN  62-1224/O4

Advanced Search
HUANG Weijiu, HE Haoran, WANG Zhenguo, GAO Dandan, ZHOU Yongtao, WANG Junjun. Cavitation and Erosion Behavior of Tin Brass in Multiphase Flow[J]. TRIBOLOGY, 2018, 38(4): 410-416. DOI: 10.16078/j.tribology.2018.04.005
Citation: HUANG Weijiu, HE Haoran, WANG Zhenguo, GAO Dandan, ZHOU Yongtao, WANG Junjun. Cavitation and Erosion Behavior of Tin Brass in Multiphase Flow[J]. TRIBOLOGY, 2018, 38(4): 410-416. DOI: 10.16078/j.tribology.2018.04.005

Cavitation and Erosion Behavior of Tin Brass in Multiphase Flow

Funds: The project was supported by the National Natural Science Foundation of China (51171216) and the National “TenThousand Plan” Scientific and Techmological Innovation Leading Talent Project
More Information
  • Corresponding author:

    HUANG Weijiu, E-mail: huangweijiu@cqut.edu.cn, Tel: +86-23-62563089

  • Received Date: December 10, 2017
  • Revised Date: April 03, 2018
  • Accepted Date: April 11, 2018
  • Available Online: June 11, 2018
  • Published Date: July 27, 2018
  • The influence of flow rate and particle on cavitation and erosion of tin brass in multiphase flow was investigated by using a scanning electron microscopy and a rotating disk system. Results show that the cavitation resistance decreased with increasing liquid flow rate, but magnitude of decrease reduced after a threshold liquid velocity due to surface hardening induced by impact of the current. The cavitation erosion process can be divided into three stages, i.e. incubation, accumulation and steady periods, through analysis of the curve of quality loss rate. Mass loss was significantly higher in liquid-solid flow than in water showing negative effect of particle on the cavitation erosion resistance. Some characteristic morphologies produced by cavitation and erosion, e.g. pits, shear lips, groove were observed by carefully analyzing the tested surface.
  • [1]
    柯伟, 杨武. 腐蚀科学技术的应用和失效案例[M]. 北京: 化学工业出版社, 2006

    Ke Wei, Yang Wu. Corrosion and failure of the application of science and technology[M]. Beijing: Chemical Industry Press, 2006(in Chinese)
    [2]
    Ezanno A, Doudard C. Validation of a high-cycle fatigue model via calculation/test comparisons at structural scale: Application to copper alloy sand-cast ship propellers[J]. International Journal of Fatigue, 2015, 74: 38–45 doi: 10.1016/j.ijfatigue.2014.12.008
    [3]
    Mazdak P, Kamyar N, Fardis N, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 850–873 doi: 10.1016/j.jngse.2014.10.001
    [4]
    邓友. 两种典型铜合金的空蚀行为研究[D]. 天津: 天津大学, 2007

    Deng You. Cavitation behavior of two typical copper alloys[D]. Tianjin: Tianjin University, 2007(in Chinese)
    [5]
    Hattori S, Yada H, Kurachi H, et al. Effect of liquid metal composition and hydrodynamic parameters on cavitation erosion[J]. Wear, 2009, 267 (11): 2033–2038 doi: 10.1016/j.wear.2009.08.002
    [6]
    Chen H S, Liu S H. Inelastic damages by stress wave on steel surface at the incubation stage of vibration cavitation erosion[J]. Wear, 2009, 266 : 69–75 doi: 10.1016/j.wear.2008.05.011
    [7]
    李建, 张永振, 彭恩高, 等. 冲蚀与气蚀复合磨损试验研究[J]. 摩擦学学报, 2006, 26(2): 164–168 doi: 10.3321/j.issn:1004-0595.2006.02.015

    Li Jian, Zhang Yongzhen, Peng Engao, et al. Expermiental study on cavitations erosion[J]. Tribology, 2006, 26(2): 164–168(in Chinese) doi: 10.3321/j.issn:1004-0595.2006.02.015
    [8]
    柳伟, 郑玉贵, 刘常升, 等. 20SiMn低合金钢和0Cr13Ni5Mo不锈钢的多相流损伤行为[J]. 材料研究学报, 2002, 16(6): 585–589 doi: 10.3321/j.issn:1005-3093.2002.06.006

    Liu wei, Zheng Yugui, Liu Changsheng, et al. Cavitation-abrasion behaviors of 20SiMn and 0Cr13Ni5Mo steels in multiphase flow[J]. Chinese Journal of Materials Research, 2002, 16(6): 585–589(in Chinese) doi: 10.3321/j.issn:1005-3093.2002.06.006
    [9]
    常近时. 工质为浑水时水泵与水轮机的空化与空蚀[J]. 排灌机械工程学报, 2010, 28(2): 93–97

    Chang jinshi. Cavitation and cavitation erosion of water pump and turbine in muddy water[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 93–97(in Chinese)
    [10]
    田立言, 丁彤, 陈嘉范, 等. 挟沙水流中空泡溃灭的试验研究[J]. 水力发电学报, 1991, (1): 68–73

    Tian Liyan, Ding Tong, Chen Jiafan, et al. The experimental study of the hollow bubble collapse of the sediment[J]. Journal of Hydroelectric Engineering, 1991, (1): 68–73(in Chinese)
    [11]
    程则久. 空化和磨蚀中临界含沙量的试验研究[J]. 水利水电技术, 1990, (2): 57–63

    Cheng Zejiu. Experimental study on the critical sediment concentration in cavitation and abrasion [J]. Water Resources and Hydropower Engineering, 1990, (2): 57–63(in Chinese)
    [12]
    邓军, 杨永全, 沈焕荣, 等. 水流含沙量对磨蚀的影响[J]. 泥沙研究, 2000, (4): 65–68 doi: 10.3321/j.issn:0468-155X.2000.04.015

    Deng Jun, Yang Yongquan, Shen Huanrong, et al. The influence to abrasion of sediment concentration[J]. Journal of Sediment Research, 2000, (4): 65–68(in Chinese) doi: 10.3321/j.issn:0468-155X.2000.04.015
    [13]
    柳伟, 郑玉贵, 姚治铭, 等. 金属材料的空蚀研究进展[J]. 中国腐蚀与防护学报, 2001, 21(4) : 250–255 doi: 10.3969/j.issn.1005-4537.2001.04.012

    Liu Wei, Zheng Yugui, Yao Zhiming, et al. Research progress on cavitation erosion of metallic materials[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21 (4): 250–255(in Chinese) doi: 10.3969/j.issn.1005-4537.2001.04.012
    [14]
    Tang C H, Cheng F T, Man H C. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting[J]. Surface and Coatings Technology, 2004, 182 (2–3): 300–307 doi: 10.1016/j.surfcoat.2003.08.048
    [15]
    王吉会, 邓友. QA19-4铝青铜在3.5%NaCl溶液中的空蚀行为[J]. 兵器材料科学与工程, 2008, 31(2): 5–9 doi: 10.3969/j.issn.1004-244X.2008.02.002

    Wang Jihui, Deng You. Cavitation erosion behavior of QA19-4 aluminum brone in 3.5% NaCl solution[J]. Ordnance Material Science and Engineering, 2008, 31(2): 5–9 (in Chinese) doi: 10.3969/j.issn.1004-244X.2008.02.002
    [16]
    Li X Y, Yan Y G, Ma L. Cavitation erosion and corrosion behavior of copper-manganese -aluminum alloy weldment[J]. Materials Science and Engineering A, 2004, 382: 82–89 doi: 10.1016/j.msea.2004.04.032
    [17]
    Thapliyal S, Dwivedi D K. On cavitation erosion behavior of friction stir processed surface of cast nickel aluminium bronze[J]. Wear, 2017, 376–377: 1030–1042 doi: 10.1016/j.wear.2017.01.030
    [18]
    Trethewey K R, Haley T J, Clark C C. Effect of ultrasonically induced cavitation on corrosion behaviour of a copper–manganese–aluminium alloy[J]. British Corrosion Journal, 2013, 23(1): 55–60
    [19]
    王军军, 李志均, 黄伟九. 沙粒粒径和外电位对黄铜腐蚀磨损的影响[J]. 摩擦学学报, 2016, 36(4): 406–412 doi: 10.16078/j.tribology.2016.04.002

    Wang Junjun, Li Zhijun, Huang Weijiu. Effect of particle size and electrochemical potential on erosion behavior of brass in liquid-solid solution[J]. Tribology, 2016, 36(4): 406–412(in Chinese) doi: 10.16078/j.tribology.2016.04.002
    [20]
    黄伟九, 李志均, 王军军, 等. 锡黄铜在3.5% NaCl中的液固两相流冲蚀机理研究[J]. 摩擦学学报, 2016, 36(1): 27–33 doi: 10.16078/j.tribology.2016.01.005

    Huang Weijiu, Li Zhijun, Wang Junjun, et al. Investigation of erosion mechanism of tin brass in 3.5% NaCl liquid-solid two phase flow[J]. Tribology, 2016, 36(1): 27–33(in Chinese) doi: 10.16078/j.tribology.2016.01.005
    [21]
    Liu Jianguo, BaKeDaShi Wulan, Li Zili, et al. Effect of flow velocity on erosion-corrosion of 90-degree horizontal elbow[J]. Wear, 2017, 376–377: 516–525 doi: 10.1016/j.wear.2016.11.015
    [22]
    Chen Huahui, Wang Chunyang, Zhao Fu, et al. Corrosion-erosion behavior and mechanisms of in-situ transformed Cf/Al2O3 Composite[J]. Wear, 2017, 376–377: 384–392 doi: 10.1016/j.wear.2017.01.017
    [23]
    梁亮, 庞佑霞, 唐勇, 等. 冲蚀磨损与冲蚀、空蚀交互磨损的对比研究[J]. 摩擦学学报, 2012, 32(4): 338–344 doi: 10.16078/j.tribology.2012.04.014

    Liang Liang, Pang Youxia, Tang Yong, et al. A comparative study between erosive wears and interactive wear[J]. Tribology, 2012, 32(4): 338–344(in Chinese) doi: 10.16078/j.tribology.2012.04.014

Catalog

    Article views (2355) PDF downloads (61) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return