Citation: | JIANG Junyou, LI Xiuyan. The Microstructure Evolution in Early Running-in Stage and its Effect on the Friction Behavior in 304 Stainless Steel[J]. TRIBOLOGY, 2018, 38(1): 37-43. DOI: 10.16078/j.tribology.2018.01.005 |
[1] |
Rigney D A. Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile material[J]. Wear, 2000, 245(1-2): 1–9. doi: 10.1016/S0043-1648(00)00460-9
|
[2] |
Rigney D A, Karthikeyan S. The evolution of tribomaterial during sliding: A brief introduction[J]. Tribology Letters, 2010, 39 (1): 3–7. doi: 10.1007/s11249-009-9498-3
|
[3] |
Tarassov S Y, Kolubaev A V. Effect of friction on subsurface layer microstructure in austenitic and martensitic steels[J]. Wear, 1999, 231(2): 228–234. doi: 10.1016/S0043-1648(99)00107-6
|
[4] |
Tuckart W, Iurman L, Forlerer E. Influence of microstructure on tribologically mixed layers[J]. Wear, 2011, 271(5-6): 792–801. doi: 10.1016/j.wear.2011.03.012
|
[5] |
Chen Xiang, Han Zhong, Li Xiuyan, et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures[J]. Science Advances, 2016, 2(12): e1601942. doi: 10.1126/sciadv.1601942
|
[6] |
Cao Huimin, Zhou Xin, Li Xiuyan, et al. Friction mechanism in the running-in stage of copper: From plastic deformation to delamination and oxidation[J]. Tribology International, 2017, 115: 3–7. doi: 10.1016/j.triboint.2017.05.027
|
[7] |
Xu Y, Zhang S H, Cheng M, et al. In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading[J]. Scripta Materialia, 2012, 67(9): 771–774. doi: 10.1016/j.scriptamat.2012.07.021
|
[8] |
Wei Xicheng, Hua Meng, Xue Zongyu, et al. Evolution of friction-induced microstructure of SUS 304 meta-stable austenitic stainless steel and its influence on wear behavior[J]. Wear, 2009, 267(9-10): 1386–1392. doi: 10.1016/j.wear.2008.12.068
|
[9] |
Nafar D R, Sabooni S, Karimzadeh F, et al. The effect of grain size and martensitic transformation on the wear behavior of AISI 304L stainless steel[J]. Materials & Design, 2014, 64: 56–62.
|
[10] |
Yang Xusheng, Sun Sheng, Zhang Tongyi. The mechanism of bcc α′ nucleation in single hcp ε laths in the fcc γ→hcp ε→bcc α′ martensitic phase transformation[J]. Acta Materialia, 2015, 95: 264–273. doi: 10.1016/j.actamat.2015.05.034
|
[11] |
Olson GB, Cohen M. A mechanism for the strain-induced nucleation of martensitic trasformation[J]. Journal of The Less-Common Metals, 1972, 28(1): 107–118. doi: 10.1016/0022-5088(72)90173-7
|
[12] |
Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6A(4): 791–795.
|
[13] |
Olson G B, Cohen M. Thermoelastic behavior in martensitic trasformations[J]. Scripta Metallurgica, 1975, 9(11): 1247–1254. doi: 10.1016/0036-9748(75)90418-4
|
[14] |
B Tabor. The friction and lubrication of solids[M]. London: Oxford at the Clarend on Press, 1964.
|