Research Progress in Tribological Problems of Ocean Structure
-
摘要: 海洋结构物主要包括海上钻井平台、油气开采平台、FPSO、海底输油管线及海上大型储油罐等大型海上结构物.海洋结构物总是处于波浪、海流、风暴、海冰等严峻海洋环境中,并受到海生物污损、海洋腐蚀、磨损等多方面因素相互作用的影响,摩擦学问题无处不在.论文针对海洋平台结构、流体处理及运输设备、定位设备及作业设备四方面的摩擦学问题进行论述,主要介绍了海洋平台结构、管道系统及海水泵、锚链及螺旋桨、钻井套管及电潜泵等海工设备的工作特点,概述了国内外关于这类海工设备的摩擦学问题的研究现状,并对海洋结构物的摩擦学研究重点进行了展望.Abstract: The offshore structure includes the offshore drilling platform, oil and gas exploitation platform, FPSO, the submarine pipeline and the large oil tank, etc. The offshore structure is affected by the severe ocean environment (such as the wave, ocean current, windstorm, the frigid sea ice) and suffered the biofouling and the ocean corrosion. The tribological problems of the offshore platform structure, fluid handling and transporting equipment, the locator device and operation equipment were discussed in this paper. The tribological characteristics of the marine equipments (such as the offshore platform structure, the pipeline system and sea water pump, the mooring chain and propeller, the well casing and electric submersible pump) were presented. The overseas and domestic research status about the tribological problems of the marine equipments were summarized, the main tribological problems of ocean structure were prospected and presented in the paper.
-
Keywords:
- offshore platform structure /
- pipeline system /
- mooring chain /
- propeller /
- well casing /
- pump /
- friction /
- wear
-
-
[1] Sodhi D S. Crushing failure during ice-structure interaction[J]. Engineering Fracture Mechanics, 2001, 68:1 889-1 921.
[2] Moslet P O. Medium scale ice-structure interaction[J]. Cold Regions Science and Technology, 2008, 54:143-152.
[3] Tuhkuri J. Experimental observations of the brittle failure process of ice and ice-structure contact[J]. Cold Regions Sci Technol, 1995, 23:265-278.
[4] Singh S K, Jordaan I J, Xiao J, et al. The flow properties of crushed ice[J]. J Offshore Mech Arctic Eng, 1995, 117(4):276-282.
[5] Fiorio B. Wear characterisation and degradation mechanisms of a concrete surface under ice friction[J]. Construction and Building Materials, 2005, 19:366-375.
[6] Fiorio B, Meyssonnier M, Boulon M. Experimental study of the friction of ice over concrete under simplified ice-structure interaction conditions[J].Can J Civil Engineering, 2002:9:347-359.
[7] 郭燕. 自升式钻井平台装配式桩腿的设计[D]. 中国石油大学, 2010. Guo Y. Design assembled legs for offshore jacket platform[D]. China University of Petroleum, 2010.
[8] 周仲荣. 微动摩擦学的发展现状与趋势[J]. 摩擦学学报, 1997, 17(3):272-280. Zhou Z R. Recent development in fretting research[J]. Tribology, 1997, 17(3):272-280.
[9] 王胜霞, 窦松柏, 李艳萍. 连接螺栓的失效分析[J]. 失效分析与预防, 2009, 4(4):225-228. Wang S X, Dou S B, Li Y P. Failure analysis of connecting bolt[J]. Failure Analysis and Prevention, 2009, 4(4):225-228.
[10] 吕凤军, 傅国如. 某型飞机对接螺栓微动疲劳裂纹分析[J]. 装备环境工程, 2011, 8(5):74-76. Lv F J, Fu G R. Fretting fatigue crack analysis of aircraft connecting bolt[J]. Equipment Environment Engineering, 2011, 8(5):74-76.
[11] Ibrahima R A, Pettitb C L. Uncertainties and dynamic problems of bolted joints and other fasteners[J]. Journal of Sound and Vibration, 2005, 279 :857-936.
[12] Brito L V R, Coutinho R, Cavalcanti E H S, et al. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel[J]. Biofouling, 2007, 23(3):193-201.
[13] Sun H Y, Ma S D, Hou B R, et al. Mathematical analysis of long term fouling corrosion in sea water[J]. Corrosion Engineering Science and Technology, 2003, 38(3):223-227.
[14] 段东霞. 污损生物附着机理及酶在生物防污中的应用[J]. 海洋科学, 2011, 35 (7):107-112. Duan D X. The adhesive strategies of fouling organism and applicationof enzyme in antibiofouling[J].Marine Science, 2011, 35 (7):107-112.
[15] Jain A, Bhosle N B.Biochemical composition of the marine conditioning film: implications for bacterial adhesion[J]. Biofouling, 2009, (25):13-19.
[16] Zardus J D, Nedved B T, Huang Y, et al. Microbialbiofilms facilitate adhesion in biofouling invertebrates[J]. the Biological Bulletin, 2008, 214 (1):91-98.
[17] Bongaerts J H, Cooper-White J J, Stokes J R. Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients[J]. Biomacromolecules, 2009, 10(5):1 287-1 294.
[18] 康永, 柴秀娟. 低表面能涂料[J]. 涂装与电镀, 2010,(6):13-15. Kang Y, Chai X J. Low surface energy antifouling coatings[J]. Coating and Plating, 2010, (6) :13-15.
[19] 邵静静, 蔺存国, 张金伟. 鲨鱼皮仿生防污研究[J]. 涂料工业, 2008, 38(10):39-41. Shao J J, Lin G C, Zhang J W. Study on shark skin's bionical and antifouling properties[J]. Paint & Coatings Industry, 2008, 38(10):39-41.
[20] 白秀琴, 袁成清, 严新平. 基于贝壳表面形貌仿生的船舶绿色防污研究[J]. 武汉理工大学学报, 2011, 33(1):75-78. Bai X Q, Yuan C Q, Yan X P. Research on green bionic ship antifouling techniques based on surface morphology of shell[J]. Journal of Wuhan University of Technology, 2011, 33(1):75-78.
[21] 钱斯文. 低表面能及仿生表面微结构防污技术[D]. 国防科学技术大学博士论文, 2008. Qian S W. Antifouling technology of low surface energy and bio-inspired microstructure[D]. National University of Defense Technology, 2008.
[22] Det Norske Veritas. Erosive wear in piping system[S]. DNV RP O501, Revision 4.2,2007.
[23] 张景轩, 石磊. 控制阀内件磨损分析[J]. 石油化工自化, 2006(5):85-88. Zhang J X, Shi L. The wear analysis of the control valve internals[J]. Automation in Petro-Chemical Industry, 2006(5):85-88.
[24] Sundararajan G. A comprehensive model for the solid particle erosion of ductile materials[J]. Wear, 1991, 149:111-127.
[25] 晏小伟, 杨曙东. 海水泵污染磨损机理的初步研究[J]. 液压与气动, 2004 (5):62-63. Yan X W, Yang S D. Pilot study about the contaminant sensitivity of seawater hydraulic pumps[J]. Chinese Hydraulics & Pneumatics, 2004(5):62-63.
[26] 赵继松, 杨曙东. 海水泵滑靴副污染磨损及控制方法研究[J]. 液压与气动, 2005(4):68-70. Zhao J S, Yang S D. Research on the contamination wear and its control of piston shoe pairs in hydraulic piston pumps[J]. Chinese Hydraulics & Pneumatics,2005(4):68-70.
[27] He X, Zhu B, Liu Y, Jiang Z. Study on a seawater hydraulic piston pump with check valves for underwater tools[J]. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2012, 226:151-160.
[28] 华责澎.我国海洋石油发展战略思考[N]. 中国石油报, 2006:10-13. Hua Z P. Thought on development strategy of offshore oil in China[N]. China Petroleum Daily, 2006:10-13.
[29] Steenkiste D V, Plasschaert S, De Baets P. Abrasive wear of link chains[J]. Sustainable Construction and Design, 2011:388-396.
[30] 毛振东. 系泊链钢的摩擦磨损与性能研究[D]. 江苏科技大学, 2011. Mao Z D. Research on frictional wear and property resistance of mooring chain steel[D]. Jiangsu University of Science and Technology, 2011.
[31] 喻济兵. 海洋工程用系泊链钢的动摩擦磨损研究[J]. 船电技术, 2011, 31(7):70-74. Yu Q B. Dynamic friction wear of mooring chain in marine engineering[J]. Marine Electric & Electronic Engineering, 2011, 31(7):70-74.
[32] Pearson B R, Waterhouse R B. The fretting of steels in seawater[C]. Proceedings of Seminar on Tribology Offshore, Institution of Mechanical Engineers, London, 1984-5.
[33] Pearson B R, Waterhouse R B. The Fretting corrosion in seawater of materials used in offshore structures[C]. Proceedings of 9th international Congress on Metallic Corrosion, Toronto, 1984-6.
[34] Chaplin C R. Failure mechanisms in wire ropes[J]. Engineering Failure Analysis, 1995, 2(1):45-57.
[35] Chaplin C R, Smith I H. Maintenance, inspection and discard of diving bell hoist ropes[C]. Health & Safety Offshore Technology Report OTH 91388, HMSO, London, 1993.
[36] 王泽爱, 周仲荣. 润滑剂减缓微动磨损研究进展[J]. 润滑与密封, 2009, 34(8):100-104. Wang Z A, Zhou Z R. The research progress on palliation of fretting wear with lubricants[J]. Lubrication Engineering, 2009, 34(8):100-104.
[37] 周利, 王磊, 陈恒. 动力定位控制系统研究[J]. 船海工程, 2008, 37(2): 86-91. Zhou L, Wang L, Chen H. Review on the study of dynamic positioning control system for vessels[J]. Ship & Ocean Engineering, 2008, 37(2): 86-91.
[38] 朱新河,严志军,王宏志,等. 船舶螺旋桨轴油液监测的研究[J]. 大连海事大学学报, 2000, 26(4):14-16. Zhu X H, Yan Z J, Wang H Z. Research on the condition monitoring of screw shaft[J]. Journal of Dalian Maritime University, 2000, 26(4):14-16.
[39] Yano A, Hirayama Y, Sakanishi A, et al. Corrosive wear of bronze propeller shaft sleeve (part 1:Investigation of the sleeve used and fundamental corrosive wear test)[J]. Tribology Transactions, 2007, 50(1): 1-12.
[40] Yano A, Hirayama Y, Sakanishi A, et al. Corrosive wear of bronze propeller shaft sleeve (part 2:Wear control by cathodic protection and application to an actual ferry)[J]. Tribology Transactions, 2007, 50(1): 13-24.
[41] Athena Information Solutions Pvt. Ltd. Indian inventor develops microlight propeller hydroturbine:Indian, 443224651[P]. 2010,04,14.
[42] 姜伟. 钻井隔水导管临界载荷及其弹性稳定性研究[J]. 中国海上油气(工程), 2006, 18(6):403-406. Jiang W. Study on critical load and elastic stability of drilling riser[J]. China Offshore Oil and Gas (Engineering), 2006, 18(6):403-406.
[43] 董小钧, 杨作峰, 何文涛. 套管磨损研究进展[J]. 石油矿场机械,2008, 37(4):32-36. Dong X J, Yang Z F, He W T. Study and development of casing wear[J]. Oil Field Equipment, 2008, 37(4):32-36.
[44] 覃成锦,高德利,唐海雄,等. 南海流花超大位移井套管磨损预测方法[J]. 石油钻采工艺,2006, 28(3):1-3. Tan C J, Gao D L, Tang H X, et al. Method of casing wear prediction for Liuhua mega-extended-reach wells in South China Sea[J]. ODPT, 2006, 28(3):1-3.
[45] 刘书杰,谢仁军,刘小龙. 大位移井套管磨损预测模型研究及其应用[J]. 石油钻采工艺, 2010, 32(6):1-3. Liu S J, Xie R J, Liu X L. Research and application of casing wear prediction for extended reach well[J]. ODPT, 2010, 32(6):1-3.
[46] Sun L Z, Gao D L, Zhu K L. Models & tests of casing wear in drilling for oil & gas[J]. Journal of Natural Gas Science and Engineering, 2012, (4):44-47.
[47] 储胜利, 樊建春, 张来斌. 全尺寸石油套管冲击滑动复合磨损试验机的研制[J]. 润滑与密封, 2007, 32(7):125-128. Chu S L, Fan J C, Zhang L B, et al. The development for a new type of sliding impact wear test machine for petroleum casing in real size[J]. Lubrication Engineering,2007, 32(7):125-128.
[48] 刘新岩, 李飞明, 张祖良. 高含砂油井液对电潜泵的破坏形式及改进措施[J]. 石油机械, 2006, 34(3):63-65. Liu X Y, Li F M, Zhang Z L. The mode of damage and improvement measure of electric submersible pump influenced by drilling fluids concluding amounts of sand and oil[J]. China Petroleum Machinery, 2006, 34(3):63-65.
[49] Susanne K, Nicolas M, Philippe D. Assessment of wear erosion-in impellers[C]. Proceedings of the twenty-sixth International pump users sys-posium, 2010:51-56.
计量
- 文章访问数: 2370
- HTML全文浏览量: 13
- PDF下载量: 2550