Effects of Dopamine-modifed UHMWPE Powders on the Toughness and Tribological Properties of Epoxy Coating
-
摘要: 利用多巴胺氧化自聚合性质改性超高分子量聚乙烯(UHMWPE)粉末惰性表面,制备得到改性粉末,并添加于环氧树脂中制备成耐磨环氧涂层,同时与添加未改性UHMWPE粉末的环氧涂层对比.采用扫描电镜(SEM)、X射线光电子能谱(XPS)和红外光谱(IR)表征改性粉末表面形貌和化学元素状态,利用摩擦磨损试验机测试环氧涂层表面的摩擦系数和磨损率.结果表明:改性粉末表面黏附1层含极性基团的聚多巴胺,能够与环氧树脂发生反应而固化在涂层中,相容性增强.改性粉末表面O,C元素相对含量比较O/C和N/C值随改性时间延长而增大,在5 h时趋于稳定.当改性粉末添加量从6.7%增至20%时,环氧涂层的抗冲击性能增强,摩擦系数和磨损率随之降低,改善了涂层的摩擦学性能,而且效果优于添加未改性粉末的涂层.Abstract: Dopamine is used to modify the inert surface of ultra high molecular weight polyethylene (UHMWPE) powders for its oxidative self-polymerical property. The compatibility between powders and epoxy resin is enhanced and then epoxy coatings with excellent anti-wear and tough properties are prepared. Scanning electron microscope, X-ray photoelectron spectroscopy and infrared spectroscopy are utilized to characterize the surface morphology and the chemical states of the dopamine-modified powders. Tribological tester is utilized to evaluate the friction coefficient and wear rate of the epoxy coatings. Results show that a polydopamine layer which is full of polar groups adhered on the surface of dopamine-modified powders. This layer reacts with the epoxy resin and this enhances the compatibility. The ratios of O to C and N to C on the surface of dopamine-modified powders first increase with the modification time and then reach a maximum at a modification time of 5 h. The impact-resistance performance of epoxy coating is enhanced by increasing the dopamine-modified powder content from 6.7% to 20%. In addition, friction coefficient and wear rate are also decreased. The comprehensive performance of epoxy coating with dopamine-modified powders is better than the one with unmodified powders.
-
Keywords:
- UHMWPE /
- dopamine /
- surface modification /
- epoxy resin /
- tribological properties /
- toughness
-
[1] 陈平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2004. Chen P, Wang D Z. Epoxy resin and its applications[M]. Beijing: Chemical Industry Press, 2004.
[2] 杜君俐. 润滑耐磨涂料的进展(Ⅱ)[J]. 现代涂料与涂装, 2001, 1: 15-17. Du J L. Evolvement of lubricative and wearable coating(ii)[J]. Modern Painting & Finishing, 2001, 1: 15-17 .
[3] 陈建敏, 冶银平, 党鸿辛. 粘结固体润滑膜及其应用[J]. 摩擦学学报, 1994, 14(2): 180-189. Chen J M, Ye Y P, Dang H X. Developing situation and application of bonded solid lubricant films[J]. Tribology, 1994, 14(2): 180-189.
[4] 何健, 李小红, 张治军. 聚合物基复合材料摩擦学改性研究新进展[J]. 摩擦学学报, 2012, 32(2): 199-208. He J, Li X H, Zhang Z J. Research advances in tribological modification of polymer-based composites[J]. Tribology, 2012, 32(2): 199-208 .
[5] 苏海燕, 闫军, 崔海萍. 改性耐磨涂料研究进展[J]. 现代涂料与涂装, 2007, 40(7): 38-41. Su H Y, Yan J, Cui H P. Research progress in modified abrasion resistance coating[J]. Modern Painting & Finishing, 2007, 40(7): 38-41 .
[6] 胡幼华, 高辉, 刘维民, 等. 纳米ZnO/环氧树脂复合材料的力学性能和摩擦学性能[J]. 摩擦学学报, 2003, 23(3): 216-220. Hu Y H, Gao H, Liu W M, et al. Tribological and mechanical properties of nano ZnO-filled epoxy resin composites[J]. Tribology, 2003, 23(3): 216-220 .
[7] 石光, 章明秋, 荣敏锐, 等. 纳米Al2O3填充环氧树脂复合材料的摩擦学性能[J]. 摩擦学学报, 2003, 23(3): 211-215. Shi G, Zhang M Q, Rong M R, et al. Tribological behavior of nanometer Al2O3 filled epoxy resin composites[J]. Tribology, 2003, 23(3): 211-215 .
[8] 丁军, 马吉强, 薛群基. 纳米Al2O3填充端异氰酸酯基聚丁二烯-环氧树脂复合涂层的干滑动摩擦[J]. 摩擦学学报, 2006, 26(4): 314-319. Ding J, Ma J Q, Xue Q J. Dry-sliding tribological properties of isocaynate-term inated polybutadine rubber-epoxy resin filled with nano Al2O3 coating[J]. Tribology, 2006, 26(4): 314-319 .
[9] 李燕, 安宇龙, 周惠娣, 等. 紫外辐照对MoS2酚醛环氧树脂黏结固体润滑涂层摩擦学性能的影响[J]. 摩擦学学报, 2009, 29(3): 227-232. Li Y, An Y L, Zhou H D, et al. Effect of ultraviolet irradiation on the tribological properties of MoS2/phenolic-epoxy resin-based bonded solid lubricant coatings[J]. Tribology, 2009, 29(3): 227-232 .
[10] 王月梅, 周惠娣, 陈建敏,等. 含二硫化钼、石墨和三氧化二锑的水性环氧树脂黏结固体润滑涂层的摩擦磨损性能[J]. 摩擦学学报, 2010, 30(6): 578-584. Wang Y M, Zhou Y M, Chen J M, et al. Preparation and friction and wear behavior of waterborne epoxy resin-based bonded solid lubricant coatings[J]. Tribology, 2010, 30(6): 578-584 .
[11] Sobieraj M C, Rimnac C M. Ultra high molecular weight polyethylene: Mechanics, morphology, and clinical behavior[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(5): 433-443.
[12] Edidina A A, Jewettb C W, Kalinowskib A, et al. Influence of mechanical behavior on the wear of 4 clinically relevant polymeric biomaterials in a hip simulator[J]. Biomaterials, 2000, 21(14): 1 451-1 460.
[13] Liu C Z, Wu J Q, Li J Q, et al. Tribological behaviours of PA/UHMWPE blend under dry and lubricating condition[J]. Wear, 2006, 260(1-2): 109-115.
[14] 宋永香, 王志政. 海洋生物及其粘附机理-微生物、小型海藻、巨型海藻、贻贝[J]. 中国胶黏剂, 2002, 4: 48-52. Song Y X, Wang Z Z. Marine organisms and their adhesion-microbial, microalgal, macroalgal, mussel[J]. China Adhesives, 2002, 4: 48-52.
[15] Silverman H G, Roberto F F. Understanding marine mussel adhesion[J]. Marine Biotechnology, 2007, 9(6): 661-681.
[16] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430.
[17] 陈寿羲, 金永泽. 超高分子量聚乙烯的结晶形态[J]. 高分子材料科学与工程, 1993, 2: 81-85. Chen S X, Jin Y Z. Morphology of ultra-high molecular weight polyethylene[J]. Polymer Materials Science and Engineering, 1993, 2: 81-85 .
[18] Peltzer M, Wagner J R, Jimenez A. Thermal characterization of UHMWPE stabilized with natural antioxidants[J]. Journal of Thermal Analysis and Calorimetry,2007, 87(2): 493-497.
[19] Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution[J]. Langmuir, 2011, 27(6): 2 819-2 825.
[20] Bhushan B. Introduction to tribology[M]. Translated by Ge S Y. Beijng: China Machine Press, 2006:114-230.
[21] Myshkin N K, Petrokovets M I, Kovalev A V. Tribology of polymers: adhesion, friction, wear, and mass-transfer[J]. Tribology International, 2005, 38(11-12): 910-921.
[22] Bahadur S. The development of transfer layers and their role in polymer tribology[J]. Wear, 2000, 245(1-2): 92-99.
[23] 胡海霞, 于思荣, 王玉辉, 等. 环氧树脂在干摩擦过程中的表面化学效应研究[J]. 摩擦学学报, 2007, 27(3): 241-245. Hu H X, Yu S R, Wang Y H, et al. Study on surface chemical effects of epoxy under dry friction[J]. Tribology, 2007, 27(3): 241-245.
-
期刊类型引用(2)
1. 李世泽,于普良,鲁炅,尹先雄,徐珲,胡回,罗强. 多斜孔节流气浮支承的微振动特性研究. 摩擦学学报. 2023(11): 1264-1272 . 本站查看
2. 刘启昂,莫继良,项载毓,陈伟,张棋翔,周仲荣. 实现振动解耦的摩擦学行为模拟试验台设计方法. 摩擦学学报. 2023(11): 1273-1284 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 6979
- HTML全文浏览量: 6
- PDF下载量: 2562
- 被引次数: 2