Friction and Wear Behaviors of Nanocrystalline Surface Layer Prepared on Deposited Layer
-
摘要: 用预压力滚压技术在堆焊修复层表面制备纳米晶层.利用TEM、SEM分析技术研究表面纳米晶层微观结构,利用CETR-3型多功能摩擦磨损试验机考察在干摩擦条件下堆焊层表面纳米晶层的摩擦磨损性能.结果表明堆焊修复层表面经表面纳米化处理后,表面形成厚度约为10 μm(晶粒尺寸小于100 nm)的纳米晶层,最表面层平均晶粒尺寸约为10 nm.纳米压痕试验表明纳米晶层的硬度提高,最表面纳米晶层的硬度约为原始堆焊层硬度的3倍.与原始堆焊试样相比,表面纳米化试样的摩擦系数降低了10%,磨损体积降低了25%~30%左右.表面纳米化样品的磨损机制由原始堆焊层的磨粒磨损和黏着磨损转变为磨粒磨损,分析表明晶粒细化导致的高硬度、低塑性是摩擦磨损性能改善和磨损机制改变的主要原因.Abstract: A nanocrystalline surface layer was fabricated on a deposited layer by using pre-forceing rolling technology. The microstructural features of the treated surface layer were characterized using scanning electron microscopy and transmission electron microscopy observations. The tribological behavior of the nanocrystalline surface layer was investigated under dry conditions by using CETR-3 tribo-meter. The grain size of the nanocrystalline surface layer of about 10 μm thickness was about 10nm in the top surface layer. Nanoindentation tests indicate the hardness of the top nanocrystalline layer was about 3 times of that of the matrix. Experimental results show that the friction coefficients and wear volume of the surface nanocrystallized samples were lower than those of the untreated samples. The friction coefficient and wear volume were reduced approximately by 10%, 28%. After surface nanocrystallization, the dominant wear mechanism was abrasive wear rather than abrasive wear and adhesive wear. The advantages in the friction and wear properties of the treated sample may be attributed to the enhancement of both the hardness and the surface activity by the grain refinement, which, in turn, result in the improvements in producing oxide layer and resistance to plastic removal.
-
-
[1] Lu K, Lu Jian. Surface nanocrystallization(SNC)of metallic materials-presentation of the concept behind a new approach[J]. J Mater Tedhnol, 1999, 15(3):193-197.
[2] Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering A, 2004, 375-377: 38-45.
[3] Tao N R, Wang Z B, Tong W P. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, (50):4 603-4 616.
[4] Zhu K Y, Vassel A, Brisset F. Nanostructure formation mechanism of a-titanium using SMAT[J]. Acta Materialia, 2004, 52: 4 101-4 110.
[5] Wang X Y, Li D Y. Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel[J]. Wear, 2003, 255:836-845.
[6] Wang Z B, Tao N R, Li S. Effect of surface nanocrystallization on friction and wear properties in low carbon steel[J]. J Mater Sci Technol, 2003, 352:144-149.
[7] Tao Nairong, Tong Weiping, Wang Zhenbo. Mechanical and wear properties of nanostructured surface layer in iron induced by surface mechanical attrition treatment[J]. J Mater Sci Technol, 2003, 19(6):563-566.
[8] 刘阳, 吕晓仁, 刘刚, 等.Q235钢高能喷丸纳米化表面的摩擦磨损行为[J].摩擦学学报, 2010, 30(5):472-478. Liu Yang, Lv Xiao-ren, Liu Gan, et al. Wear behaviors of nanocrystallization surface of Q235 steel by high energy peening[J]. Tribology, 2008, 28(1):472-478.
[9] 李国宾, 关德林, 张明星.表面纳米化中碳钢在干摩擦条件下的摩擦磨损性能研究[J].摩擦学学报, 2008, 28(1):39-43. Li G B, Guan D L, Zhang M X. Friction and wear properties of medium carbon steel by m eans of surface nanocrystallization in dry slidig[J]. Tribology, 2008, 28(1):39-43.
[10] Hall E O. Proc. Phys. Soc. Lond. B64 (1951)747. N.J. Petch, J. Iron Steel Inst. 174(1953)25.查阅请修改该条参考文献格式. [11] Richard W Siegel, Gretchen E Fougere. Mechanical properties of nanophase metals[J]. Nano Stmcture M Materials, 1995, 6: 205-216.
[12] Mishra R, Basu B, Balasubramaniam R. Effect of grain size on the tribological behavior of nanocrystalline nickel[J]. Material Science Engineering A, 2004, 373:370-373.
[13] 温诗铸, 黄平. 摩擦学原理[M]. 北京:清华大学出版社, 2003. Wen S Z, Huang Ping. Tribology principle[M]. Beijing: Tsinghua University press, 2003.
[14] Jia K, Fischer T E. Abrasion resistance of nanostructured and conventional cemented carbides[J]. Wear, 1996, (200):206-214.
[15] Jeong D H, Gonzalez F, Palumbi G. The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings[J]. Scripta Mater, 2001(44):493-499.
[16] Li X Y, Tandon K N. Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and Al based composite[J]. Wear, 2000, 245:148-161.
[17] F A Gao, N Trannoy, J Lu. Analysis of thermal properties by scanning thermal microscopy in nanocrystallized iron surface in duced by ultrasonic shot peening[J]. Materials Science and Engineering A, 2004(369):36-42.
-
期刊类型引用(10)
1. 雷成迁,林有希,蔡建国. 热作模具修复层表面滚压加工研究进展. 机床与液压. 2021(02): 136-140+151 . 百度学术
2. 胡治流,黄惠毅,唐鹏,农登. Fe对Al-10Si合金微观组织和摩擦性能的影响. 材料研究与应用. 2019(01): 1-7 . 百度学术
3. 巴德玛,孙晓峰,邱骥,李新. 基于纳米晶的低温离子渗硫层油润滑条件下摩擦磨损性能. 中国表面工程. 2017(06): 140-148 . 百度学术
4. 周路海,韦习成,王春燕,鲁军,王武荣. T10钢的干滑动摩擦学行为与晶粒尺寸的关系. 材料研究学报. 2017(11): 833-838 . 百度学术
5. 刘玉德,王硕,石文天,吴刚,张浩. 铜钢异种材料摩擦堆焊工艺优化. 电焊机. 2017(04): 108-111 . 百度学术
6. 张枝森,何柏林,徐先锋. 钢材表面纳米化技术的研究进展. 热加工工艺. 2017(04): 17-20+26 . 百度学术
7. 席翔,夏延秋,曹正锋,王骏遥,梁秀兵,乔玉林. 高速电弧喷涂Al-Ni-Mm-Co涂层在脂润滑下的摩擦磨损性能. 中国机械工程. 2017(02): 215-222 . 百度学术
8. 巴德玛,孟凡军,孙晓峰,刘晓亭,李新. 堆焊层预压力滚压表面纳米化层的微观结构. 材料热处理学报. 2015(01): 173-177 . 百度学术
9. 许发红,刘洪喜,张晓伟,蒋业华. 机械搅拌对Fe-Cr-C系明弧堆焊合金显微组织及其耐磨性的影响. 材料热处理学报. 2015(07): 210-216+221 . 百度学术
10. 张光耀,王成磊,高原,宋沂泽. 稀土对6063Al镍基激光熔覆层组织及摩擦磨损性能的影响. 摩擦学学报. 2015(03): 335-341 . 本站查看
其他类型引用(9)
计量
- 文章访问数: 1799
- HTML全文浏览量: 4
- PDF下载量: 1465
- 被引次数: 19