The Tribological Property of UHMWPE under the Lubrication of Sodium Hyaluronate Reinforced by Graphene Oxide
-
摘要: 采用UMT-3MT往复式滑动摩擦磨损试验机,研究在透明质酸钠(SHA)润滑介质下,氧化石墨烯(GO)对基体材料超高分子量聚乙烯(UHMWPE)摩擦学性能的影响.利用高分辨扫描电子显微镜(HR-SEM)和Micro-XAM非接触式3D表面轮廓仪观察试样表面磨痕形貌并计算其磨损率.结果表明:在SHA润滑介质下,无机填料GO的添加显著降低UHMWPE基复合材料的磨损率,但是,GO的添加对复合材料稳态摩擦系数和残留在SHA润滑介质中的磨粒特征无明显影响.无机填料GO的添加增强了UHMWPE在SHA润滑介质下的耐磨性能.Abstract: The tribological property of UHMWPE and its composites reinforced by Graphene Oxide (GO) were investigated using the UMT-3MT reciprocating friction testing apparatus under the lubrication medium of sodium hyaluronate (SHA). The surface topographies and the wear rate of these composites were observed and evaluated by a high-resolution scanning electron microscope and an Micro-XAM three-dimensional surface profiler. The results demonstrate that the wear rate of GO/UHMWPE composites was reduced significantly as the increasing content of GO under the lubrication medium of SHA, but no significant differences were found in the steady coefficient of friction and the characteristic of the wear debris in SHA was the same as that produced by the pure UHMWPE. The wear resistance of UHMWPE was improved markedly with the addition of GO filler.
-
[1] Li S, Burstein A H. Ultra-high molecular weight polyethylene. The material and its use in total joint implants[J]. The Journal of bone and joint surgery.American volume, 1994, 76(7):1 080-1 090.
[2] Kobayashi A, Bonfield W, Kadoya Y, et al. The size and shape of particulate polyethylene wear debris in total joint replacements[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1997, 211(1):11-15.
[3] Shanbhag A S, Bailey H O, Hwang D S, et al. Quantitative analysis of ultrahigh molecular weight polyethylene (UHMWPE) wear debris associated with total knee replacements[J]. Journal of Biomedical Materials Research, 2000, 53(1):100-110.
[4] Geringer J, Tatkiewicz W, Rouchouse G. Wear behavior of PAEK, poly(aryl-ether-ketone), under physiological conditions, outlooks for performing these materials in the field of hip prosthesis[J]. Wear, 2011.271(11-12):2 793-2 803.
[5] Plumlee K, Schwartz C J. Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles[J]. Wear, 2009, 267(5-8):710-717.
[6] Xiong D S, Ge S R. Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions[J]. Wear, 2001, 250(1-12):242-245.
[7] Xiong L, Xiong D S, Jin J B. Study on tribological properties of irradiated crosslinking UHMWPE nano-composite[J]. Journal of Bionic Engineering, 2009, 6(1):7-13.
[8] Roy S, Pal S. Characterization of silane coated hollow sphere alumina-reinforced ultra high molecular weight polyethylene composite as a possible bone substitute material[J]. Bulletin of Materials Science, 2002, 25(7):609-612.
[9] Xue Y, Wu W, Jacobs O, et al. Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes[J]. Polymer Testing, 2006, 25(2):221-229.
[10] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[11] Gonalves G, Marques P A A P, Barros-Timmons A G, et al. Graphene oxide modified with PMMA via ATRP as a reinforcement filler[J]. Journal of Materials Chemistry, 2010, 20(44):9 927-9 934.
[12] Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. Journal of Materials Chemistry, 2009, 19(26):4 632-4 638.
[13] Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18(11):2 740-2 749.
[14] Tai Z X, Chen Y F, An Y F, et al. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets[J]. Tribology Letters, 2012, 46:55-63.
[15] Chen Y F, Qi Y Y, Tai Z X, et al. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites[J]. European Polymer Journal, 2012. 48(6):1 026-1 033.
[16] 安应飞, 邰志新, 阎兴斌, 等. 在胎牛血清蛋白润滑环境下GO/UHMWPE 复合材料的摩擦学性能研究[J]. 摩擦学学报, 2012, 32(006):533-737. An Y F, Tai Z X, Yan X B, et al. Tribological property of GO/UHMWPE composites under the lubrication of bovine serum albumin[J]. Tribology, 2012, 32(006):533-537.
[17] Ralphs J R, Benjamin M. The joint capsule:structure, composition, ageing and disease[J]. Journal of Anatomy, 1994, 184(Pt 3):503-509.
[18] Nonaka T, Kikuchi H, Ikeda T, et al. Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in human synovial fibroblasts of osteoarthritis and rheumatoid arthritis[J]. Journal of rheumatology, 2000, 27(4):997-1 004.
[19] 凌沛学, 梁虹, 贺艳丽, 等. 透明质酸钠在关节疾病中的应用[J]. 中国修复重建外科杂志, 2002, 16(1):1-4. Ling P X, Liang H, He Y L, et al. The application of sodium hyaluronate in joint diseases[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2002, 16(1):1-4.
[20] Hashimoto Y. Multicenter clinical studies of ARTZ (high molecular weight sodium hyaluronate) in the long term treatment of osteoarthritis of the knee: including x-ray analysis[J]. Japanese Pharmacology and Therapeutics, 1992, 20(7):2 699-2 712.
[21] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958.80(6):1 339-1 339.
[22] 安应飞, 刘斌, 阎兴斌, 等. 氧化石墨烯增强义齿基托材料耐磨性能的实验研究[J]. 摩擦学学报, 2013, 33(3):222-228. An Y F, Liu B, Yan X B, et al. The experimental study on wear resistance of the denture base material reinforced with graphene oxide[J]. Tribology, 2013, 33(3):222-228.
[23] Gispert M P, Serro A P, Colaco R, et al. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants[J]. Wear, 2006, 260(1-2):149-158.
[24] Sawae Y, Yamamoto A, Murakami T. Influence of protein and lipid concentration of the test lubricant on the wear of ultra high molecular weight polyethylene[J]. Tribology International, 2008, 41(7):648-656.
[25] Pan 睙攠慓爬?摘敩扯牮楧猠?搠楓献琠牆楲扩畣瑴楩潯湮?潰晲?啰??坴偩??愠杯慦椠湮獡瑮?匭楨?獤畲扯????獡畴扩?乥?獲略扩????獣略扤??扯慬汹氨?楩湮?扬椠?摬楣牯敨捯瑬椩漠湧慥汬?獣汯業摰楯湳杩孴?嵳??坳攠慡牮???ぴど?????????????????????扥牡?嬬??崰‰圹愬渠朲?匶?????攺?匹?刭?‰?椮甼??吾?′?敝洠?敡瑮?愠汄??救浵???坘攬愠版?扡敮桧愠癊椬漠甼牥?愾湥摴?睡敬愼爯?摭放戮爠楃獨?捲桡慣牴慥捲瑩敺牡楴穩慯瑮椠潯湦?潡晬?啮??坯偮??潥渠?慯汤畩浵業渭慬?捡敤牥慤洠楕捈??獐瑅愠楦湯汲攠獡獮?獩琭敯敳汴???潹?物?漠?慮渠摯?呴楨?獰略扤????獰異扬??污?獩畯扮????献甠才?噴?桲楩灡?灳爠潓獣瑩桥敮獣敥猠?楮湤?慅?桧楩灮?橥潲楩湮瑧?獃椬洠甲氰愱琱漬爠嬳?崨???漸申爭渹愱氮?潢晲 ̄?椲漷浝椠浌敩瑵椠捈猬???椠潙洠慑琬攠牗楡慮汧猠??慍測搠?呥業猾獥畴攠??渼术楥湭放攮爠楉湮朠???ふㄠび??????????扮牤?孴??嵲??潬測朠瑴慲潩????卧桩楣牡潬渠杰????卲桴潩略晳愠湯?????敲浭?敳瑥?慴汩??攠浰????潭浩灤慥爯楧獲潡湰?潥普?眠敯慸物?摥攠扮牡楮獯?杯敭湰敯牳慩瑴敥摳?晊牝漮洠?畯汵瑲牮慡?栠楯杦栠?浡潴汥敲捩畡汬慳爠?督敩楥杮档瑥?瀠漲氰礱攱琬栠礴氷攺渱攠?椶渷?瘱椠瘸漷?愮渼摢?椾湛′愸牝琠楔晩楰捰楥慲氠?樠潌椬渠瑇?獬楶浩畮氠慁琠潌爬嬠?嵩??坩敡慭牳??水???? ̄??ㄠ????????????lation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators[J]. Journal of Biomedical Materials Research Part A, 2006, 78(3):473-480. [29] Scott M, Widding K, Jani S. Do current wear particle isolation procedures underestimate the number of particles generated by prosthetic bearing components?[J] Wear, 2001, 251(1-12):1 213-1 217.
[30] Tipper J L, Ingham E, Hailey J L, et al. Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrieved Charnley hip prostheses[J]. Journal of Materials Science: Materials in Medicine, 2000, 11(2):117-124.
[31] Chen Y F, Qi Y Y, Tai Z X, et al. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites[J]. European Polymer Journal, 2012, 48(6):1 026-1 033.
[32] 吴莉, 高新蕾, 高万振. Schiff碱铜(Ⅱ)配合物改性超高分子量聚乙烯的低速滑动摩擦研究[J]. 摩擦学学报, 2010, 30(5):453-460. Wu L, Gao X L, Gao W Z. The sliding friction of UHMWPE modified by schiff base copper (Ⅱ) complex tested at low speeds[J]. Tribology, 2010, 30(5):453-460.
[33] Dasari A, Yu Z Z, Mai Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites[J]. Materials Science and Engineering: R: Reports, 2009.63(2):31-80.
[34] Ge S R, Wang S B, Gitis N, et al. Wear behavior and
-
期刊类型引用(10)
1. 孟兆洁,王云霞,阎逢元,李楠. ATP-TiO_2杂化材料形貌对UHMWPE复合材料微动磨损性能的影响. 摩擦学学报. 2022(05): 990-1000 . 本站查看
2. 李强,黎晓华,王浩杰. 3D打印钛合金骨架浸渗PE–UHMW复合材料制备及性能. 工程塑料应用. 2020(03): 34-38+43 . 百度学术
3. 张崇礼,黄国栋,胡吉仁. 氧化石墨烯的制备及谱图分析. 广州化工. 2019(21): 45-47 . 百度学术
4. 段为朋,韩基泰,冒浴沂. VE扩散改性对UHMWPE/GO复合材料表面性能的影响. 塑料. 2019(05): 51-53+106 . 百度学术
5. 段为朋,黄国栋,陈国美,陆佩佩,倪自丰. 辐照交联及老化对GO/UHMWPE复合材料生物摩擦学性能的影响. 塑料工业. 2018(02): 102-106+97 . 百度学术
6. 陆佩佩,倪自丰,陈国美,钱善华. SBF氧化降解对辐照交联GO/VE/UHMWPE复合材料结构和力学性能的影响. 塑料工业. 2018(10): 119-122 . 百度学术
7. 孙宝勇,刘利国,倪自丰,刘响. 纳米远红外陶瓷粉填充UHMWPE复合材料的性能研究. 塑料工业. 2017(03): 66-69 . 百度学术
8. 潘炳力,刘永辉,朱常宝,陈君,牛荣军,逄显娟,张永振. 相变颗粒改性聚酰胺的高速摩擦学行为. 摩擦学学报. 2016(04): 430-437 . 本站查看
9. 石国军,袁月,李翠,沈俭一. 玻璃微珠增强超高分子量聚乙烯的耐磨耐热性能研究. 摩擦学学报. 2015(06): 714-723 . 本站查看
10. 潘炳力,李宁,杜三明,孙乐民,刘继纯,楚广成,张永振. 相变微胶囊改性UHMWPE复合材料的摩擦学性能. 摩擦学学报. 2014(06): 631-640 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 2021
- HTML全文浏览量: 10
- PDF下载量: 2070
- 被引次数: 16