ISSN   1004-0595

CN  62-1224/O4

高级检索

水介质条件下7075合金扭转复合微动磨损特性研究

沈明学, 蔡振兵, 周琰, 彭旭东, 朱旻昊

沈明学, 蔡振兵, 周琰, 彭旭东, 朱旻昊. 水介质条件下7075合金扭转复合微动磨损特性研究[J]. 摩擦学学报, 2013, 33(6): 594-599.
引用本文: 沈明学, 蔡振兵, 周琰, 彭旭东, 朱旻昊. 水介质条件下7075合金扭转复合微动磨损特性研究[J]. 摩擦学学报, 2013, 33(6): 594-599.
SHEN Ming-xue, CAI Zhen-bing, ZHOU Yan, PENG Xu-dong, ZHU Min-hao. Dual-rotary Fretting Wear Characteristic of 7075 Alloy in Water[J]. TRIBOLOGY, 2013, 33(6): 594-599.
Citation: SHEN Ming-xue, CAI Zhen-bing, ZHOU Yan, PENG Xu-dong, ZHU Min-hao. Dual-rotary Fretting Wear Characteristic of 7075 Alloy in Water[J]. TRIBOLOGY, 2013, 33(6): 594-599.

水介质条件下7075合金扭转复合微动磨损特性研究

基金项目: 

国家杰出青年科学基金(51025519);国家自然科学基金(51005192)和教育部创新研究团队项目(IRT1178)资助.

详细信息
  • 中图分类号: TH117

Dual-rotary Fretting Wear Characteristic of 7075 Alloy in Water

  • 摘要: 在新型扭转复合微动试验机上,以7075合金平面/GCr15钢球配副为研究对象,研究水介质对7075合金扭转复合微动磨损行为的影响.在微动动力学特性分析的基础上结合磨痕形貌微观分析,研究水介质环境下7075合金扭转复合微动的磨损机理.结果表明:水介质对扭转复合微动运行和损伤机制存在显著影响,水介质明显地改变了微动运行区域;相比干态,在部分滑移区和混合区,水介质下的剥层现象更加明显,水介质加速了微动损伤.在滑移区,磨损机制主要转变为以磨粒磨损为主,湿润的磨屑能有效降低表面摩擦系数和减缓微动损伤;而单一的水介质会加剧材料的磨损.此外,水介质和干态微动环境中不同倾斜角度下的磨损体积均与累积耗散能分别呈不同的线性关系.
    Abstract: The 7075 aluminum alloy flat against GCr15 steel ball were chosen as friction pair. The effect of water medium on the dual-rotary fretting (DRF) wear behavior of 7075 aluminum alloy has been investigated by using an advanced dual-rotary fretting rig. Base on the analysis of the frictional kinetics and the observation of wear morphologies, the damage characteristics of 7075 aluminum alloy in water medium were discussed in detail. The results indicate that the water medium had significant effects on the fretting running characteristics and the damage mechanism. The delamination phenomenon under water medium were more obviously in the partial slip regime and the mixed fretting regime than that of dry condition, and the fretting damage was accelerated in water medium. In slip regime, the main wear mechanisms were gradually changed into abrasive wear, a mixture of the debris and water can more effectively reduce the friction coefficient and mitigate the fretting damage than pure water. In addition, two linear relationship between accumulated dissipated energy and angular displacement amplitudes can be found in water medium and dry condition.
  • [1] 周仲荣, 朱旻昊. 复合微动磨损[M]. 上海: 上海交通大学出版社, 2004.

    Zhou Z R, Zhu M H. Composite fretting wear[M]. Shanghai: Shanghai JiaoTong University Press, 2004.

    [2] 沈明学, 谢兴源, 蔡振兵, 等. 扭转复合微动模拟及其试验研究[J]. 机械工程学报, 2011, 15:89-94.

    Shen M X, Xie X Y, Cai Z B, et al. Experimental study and simulation of dual-rotary fretting[J]. Journal of Mechanical Engineering, 2011, 15: 89-94.

    [3]

    Shen M X, Zhu M H, Cai Z B, et al. Dual-rotary fretting wear behavior of 7075 aluminum alloy[J]. Tribology International, 2012, 48: 162-171.

    [4] 王成焘. 人体生物摩擦学[M]. 北京: 科学出版社, 2008.

    Wang C T. Human biotribology[M]. Beijing: Science Press, 2008.

    [5]

    Périer V, Dieng L, Gaillet L, et al. Influence of an aqueous environment on the fretting behaviour of steel wires used in civil engineering cables[J]. Wear, 2011, 271: 1 585-1 593.

    [6]

    Chung I, Lee M. An experimental study on fretting wear behavior of cross-contacting Inconel 690 tubes[J]. Nuclear Engineering and Design, 2011, 241: 4 103-4 110.

    [7] 任平弟, 陈光雄, 周仲荣. 不同水介质润滑下GCr15钢的微动磨损特性[J]. 摩擦学学报, 2003, 23(4): 331-335.

    Ren P D, Chen G X, Zhou Z R. Fretting wear behavior of GCr15 steel under lubrication of various aqueous Mediums[J]. Tribology, 2003, 23(4): 331-335.

    [8]

    Ding H Y, Zhou G H, Dai Z D, et al. Corrosion wear behaviors of 2024Al in artifcial rainwater and seawater at fretting contact[J]. Wear, 2009, 267: 292-298.

    [9] 沈燕, 张德坤, 王崧全, 等. 矿用钢丝在腐蚀介质环境下的微动行为研究[J]. 摩擦学学报, 2011, 31(1): 66-71.

    Shen Y, Zhang D K, Wang S Q, et al. Fretting behaviors of steel wires as hoisting ropes for coal mine in corrosive media[J]. Tribology, 2011, 31(1): 66-71.

    [10] 谢兴源, 沈明学, 蔡振兵, 等. 7075铝合金扭转复合微动磨损研究[J]. 摩擦学学报, 2012, 32(1): 70-75.

    Xie X Y, Shen M X, Cai Z B, et al. Dual-rotary fretting behavior of 7075 aluminum alloy[J]. Tribology, 2012, 32(1): 70-75.

    [11]

    Kalin M, Vižintin J. The tribological performance of DLC coatings under oil-lubricated fretting conditions[J]. Tribology International, 2006, 39: 1 060-1 067.

    [12]

    Cai Z B, Zhu M H, Shen H M, et al. Torsional fretting wear behaviour of 7075 aluminium alloy in various relative humidity environments[J]. Wear, 2009, 267: 330-339.

    [13]

    Mo J L, Zhu M H, Zheng J F, et al. Study on rotational fretting wear of 7075 aluminum alloy[J]. Tribology International, 2010, 43: 912-917.

    [14]

    Fouvry S, Kapsa PH, Zahouani H, et al. Wear analysis in fretting of hard coatings through a dissipated energy concept[J]. Wear. 1997, 203-204:393-403.

    [15]

    Fouvry S, Liskiewicz T, Kapsa PH, et al. An energy description of wear mechanisms and its applications to oscillating sliding contacts[J]. Wear, 2003, 255: 287-298.

    [16]

    Zheng J F, Yang S, Shen M X, et al. Study on rotational fretting wear under a ball-on-concave contact con?guration[J]. Wear, 2011, 271: 1 552-1 562.

计量
  • 文章访问数:  1667
  • HTML全文浏览量:  9
  • PDF下载量:  1331
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-24
  • 修回日期:  2013-05-01
  • 发布日期:  2013-12-15

目录

    /

    返回文章
    返回