-
摘要:
水下胶黏剂在多个领域中有着巨大的应用潜力,以往报道的胶黏剂大都需要外界能量的触发实现水下固化,这很大程度上限制了其应用范围. 因此,亟需开发1种能在水下自适应黏附的胶黏剂来扩展其应用的灵活性和实用性. 为此,本文中报道了1种以水为触发开关,通过金刚烷和β-环糊精的主客体作用在水下自适应组装形成稳定的包合物来提升内聚能,实现高强度水下黏附. 这种合理的设计使胶黏剂可以在多种水环境(超纯水、酸和碱溶液、海水)中直接作业,并对多种基材表现出具有良好的润湿性和强大的黏合效果(纯水中黄铜基材上浸泡12 h后黏附强度达940.8 kPa),且随时间延长黏附强度没有降低(15天后仍保持高强度),同时表现出了杰出的可循环使用性(10次循环仍稳定),将有助于减轻对海洋生态系统和环境的负担. 这种原位水下自适应固化策略极大地提高了其在复杂环境下的应用便利性,将丰富新兴的水下胶黏剂领域.
Abstract:Designing and developing adhesives that bond strongly to wet surfaces in humid environments or completely submerged in water has been a real challenge. Curing of underwater adhesives usually requires a long time as well as external energy, which limits the range of applications for underwater adhesives. We overcame these problems by integrating the host-guest interactions of adamantane (AD) and β-Cyclodextrin (β-CD) and the hydrophobic interactions of polydimethylsiloxane (PDMS) into a single system and mimicking the adhesion mechanism of mussel foot proteins. We prepared hyperbranched polymers P1 containing adhesion groups dihydroxyphenylalanine (DOPA) and AD, as well as PDMS polymers P2 capped with β-CD. Through a one-step Michael addition reaction, the adhesion functional group DOPA, the rigid hydrophobic group benzylamine hydrochloride (BENA), and the guest functional unit AD were successfully integrated into the hyperbranched polymers P1. The (β-CD)-capped PDMS host polymers P2 was obtained by reacting the host functional unit β-CD with poly(dimethylsiloxane), diglycidyl ether terminated (PDMS-DGE). The host-guest underwater adhesive was obtained by mixing P1 and P2 polymer solutions and forming a stable inclusion P3 complex of AD with β-CD in water. Strong underwater adhesion was mainly realized through three points: 1. AD and β-CD were adaptively underwater assembled through the host-guest interaction, which squeezed out the water from the inner cavity of the β-CD, realizing the hydrophobic repulsion of molecular chains and increasing the cohesive energy; 2. the catechol group of DOPA formed a large number of hydrogen bonds with the surface of the substrate, resulting in strong interfacial adhesion; 3. hydrophobic PDMS resisted water erosion and protected the internal polymer chain, thus achieving the strength of the underwater adhesion stable for a long period of time. Experimental tests had shown that this rational design endowed the underwater adhesive with exceptional performance. The stabilized inclusion P3 formed through adaptive assembly exhibited strong underwater adhesion strength (brass substrate in pure water 12 h reaches 940.8kPa), which was a significant improvement over the adhesion strength of existing underwater adhesives (200~600 kPa). Significantly, P3 required only one hours to initially cure and adhere the substrate tightly, and reached peak adhesion strength after 12h of curing. Contact angle tests had confirmed the good wettability of P3 adhesives on different substrate surfaces (organic and inorganic). This allowed the adhesive to tend to displace interfacial water when applied to the substrate in an underwater environment, thereby gaining sufficient contact area on the substrate to achieve strong adhesion to a wide range of substrates. In addition to its strong adhesive properties, our underwater adhesive remained stable in a wide range of aquatic environments (ultrapure water, acidic and alkaline solutions, seawater). Even after 15 days of immersion in water, it maintained high adhesion strength. The host-guest adhesive P3 maintained strong adhesion properties after several adhesion-detachment cycles underwater, which proved its reusability. Economically and environmentally, this not only helped to reduce costs, but was also in line with the concept of green chemistry, which protected the environment and helped to reduce the burden on marine. This in-situ underwater adaptive curing strategy greatly improved the ease of application of underwater adhesives in complex environments and provides abundant possibilities for the subsequent design of a new generation of green underwater adhesives that combined high adhesion strength, long-term durability and stability in harsh environments.
-
Keywords:
- underwater adhesion /
- host-guest interaction /
- self-adaptive /
- bioinspired adhesive /
- mussel
-
胶黏剂是日常生活、工业及生物医学领域不可或缺的材料[1-3]. 工作于干燥空气环境的胶黏剂已得到了广泛的研究[4]. 然而,在水下环境中这些胶黏剂黏附能力往往会严重减弱甚至丧失[5-7],因为水分子的存在会导致胶黏剂本体溶胀松散并同时造成黏附界面的脱落. 具体来说,一方面水的存在会使胶黏剂分子溶胀,机械强度减弱甚至丧失,从而破坏胶黏剂的内聚力,出现黏附失效;另一方面由于水分子会吸附在胶黏剂界面上形成1层薄薄的水化膜,大大阻碍胶黏剂与黏附基底的紧密接触,从而破坏界面结合力,导致黏附胶脱落. 因此,开发水下具有高黏附强度的通用胶黏剂是1个巨大的挑战.
在自然界中,许多海洋生物,如贻贝、藤壶和沙堡蠕虫为了适应复杂多变的海洋生活环境,它们在长期进化过程中获得了分泌黏液的能力. 这种黏液是由多种氨基酸组成的黏性蛋白,其固化后展现出强大的本体黏附和高界面黏附[8-11],可以牢固而快速地黏附在岩石上. 向自然界学习是人类不断创新发展进步的源泉,在过去的几十年中,研究人员揭示了贻贝优异的黏附性能与蛋白质内部含有邻苯二酚氨基酸(3,4-二羟基苯基-L-丙氨酸,DOPA)以及蛋白质内部的多种非共价/共价相互作用相关[9, 12-13]. 相互作用主要包括疏水相互作用、静电相互作用、氢键、π-π相互作用以及阳离子-π相互作用等[14-16],利用这些相互作用,研究人员通过合成带有DOPA基团的聚合物发展出了一系列的水下胶黏剂[17-19]. Zhou等[20]报导了1种由DOPA和双酚A二缩水甘油醚组成的共聚物,这种共聚物在FeCl3氧化剂的作用下,在水下显示了高黏附强度. Abraham Joy等[21]制备了1种由长链脂肪烃、DOPA和香豆素聚合而成的胶黏剂,在紫外光照下引发交联固化,水下黏附强度最大达到0.65 MPa. Marleen Kamperman等[22]将含有阳离子的聚合物和阴离子的聚合物分别接枝到聚(N-异丙基丙烯酰胺)上,在温度的触发下,实现胶黏剂固化. 类似地,相关研究[23-24]通过温度的变化触发实现水下黏附,然而这些胶黏剂的凝聚固化需要外界的能量引发,比如氧化剂温度和紫外光等,这就大大限制了其应用范围,在一些深水或者海底作业中,外界能量的引入可能受到限制. 另外,紫外光固化的胶黏剂只适用于透明或半透明的基材,对于不透明的基材,紫外线无法穿透以引发固化,限制了胶黏剂的使用范围. 因此,亟需开发1种无需外界能量引发,不受水深、温度、压力、或光照强度的限制,可以水下自适应凝聚固化的水下胶黏剂,这对于深海或其他特殊水域的应用至关重要.
为了解决这个问题,本文中提出了1种新的策略,将DOPA、超支化聚合物、疏水相互作用和主客体相互作用结合在1个系统中,以水为触发开关,该体系进入水中后可以实现自适应的固化. 为此,设计制备了2种聚合物,1种是含有黏附基团DOPA和金刚烷(AD)的超支化聚合物,1种是β-环糊精(β-CD)封端的PDMS聚合物. 2种聚合物在水中通过AD和β-CD的主客体作用交联在一起,由于β-CD具有内腔疏水、外部亲水的特性,在AD与β-CD的主客体包合物形成过程中,AD等疏水性分子倾向于进入β-CD的内腔,从而将β-CD内腔中的水分子挤出,以减少AD暴露于水中的表面积,形成稳定的包合结构. 这个过程既实现了分子链疏水排斥,又实现了AD与β-CD的有效结合,提升了内聚能,实现了水下的自适应黏附. 这种黏附材料在多种无机及有机基材上具有良好的润湿性和出色的黏合强度,同时在较宽pH范围和海水环境中表现出稳定的黏合能力.
1. 试验部分
1.1 试剂及材料制备
1.1.1 试剂
多巴胺盐酸盐(Dopamine hydrochloride, DOPA),质量分数为98%,购自J & K Scientific公司;苄胺盐酸盐(Benzylamine hydrochloride, BENA),质量分数为99%,购自J & K Scientific公司;盐酸金刚烷胺(1-Adamantanamine hydrochloride, ADAA),质量分数为99%,购自Macklin公司;聚二季戊四醇六丙烯酸酯(Dipentaerythritolhexaacrylate, DPEHEA),质量分数为98%,购自Macklin公司;聚乙二醇二丙烯酸酯(Poly(ethylene glycol) diacrylate-200, PEGDA-200),平均分子量约200,购自Macklin公司;三乙胺(Triethylamine, TEA),质量分数为99%,购自J & K Scientific公司;聚(二甲基硅氧烷)-二缩水甘油醚封端(Poly(dimethylsiloxane), diglycidyl ether terminated, PDMS-DGE),平均分子量约800,购自Macklin公司;β-环糊精(β-Cyclodextrin, β-CD),质量分数为98%,购自Aladdin公司;1,8-二氮杂双环[5.4.0]十一碳-7-烯(1,8-Diazabicyclo[5.4.0]undec-7-ene, DBU),质量分数为98%,购自J & K Scientific 公司;二甲亚砜(Dimethyl sulfoxide, DMSO),质量分数为99%,购自J & K Scientific公司;甲基叔丁基醚(Methyl tert-butyl ether, MTBE),分析纯,购自成都市科隆化学品有限公司;N,N-二甲基甲酰胺(N,N-Dimethylformamide, DMF),分析纯,购自利安隆博华天津医药化学有限公司;异丙醇,化学纯度,购自四川西陇科学有限公司.
1.1.2 含AD的超支化聚合物P1制备
根据先前报道的文献[25],超支化聚合物是在弱碱介质中通过Michael加成反应合成的. 将DPEHEA (
2.6035 g, 4.5 mmol)、PEGDA-200 (1.3 g, 6.5mmol)、DOPA (1.3275 g, 7 mmol)、BENA (1.0053 g, 7 mmol)、ADAA (0.3754 g, 2 mmol)和23 g DMSO混合加入烧瓶中. 待搅拌溶解后,加入TEA (4.5 mL),然后放入80 ℃油浴锅中,避光反应10小时. 反应物用MTBE至少洗涤5次,放入室温真空烘箱24小时,获得产物,放入冰箱储存备用.1.1.3 β-CD封端的PDMS聚合物P2制备
根据先前报道的文献[26-27],略微修改合成. 在惰性气氛下,将β-CD (5.6 g, 4.9 mmol)、PDMS-DGE (2.548 g, 3.185mmol)、DBU (0.05 g, 0.33 mmol)和24.5 g DMF混合加入烧瓶中,待搅拌溶解后,放入98 ℃油浴锅中反应2.5小时,用异丙醇沉淀离心,然后放入室温真空烘箱24小时获得产物,放入冰箱储存备用.
1.1.4 主客体胶黏剂P3的制备
将2.4 g 聚合物P1溶解在1.2 g DMSO中,超声溶解备用;将1.809 6 g聚合物P2溶解在0.904 g DMSO中,超声溶解备用. 将2种聚合物溶液混合,超声30 min,获得主客体胶黏剂.
1.1.5 不同溶液环境的配制
不同pH值的水溶液由超纯水和盐酸或者氢氧化钠配制,并用pH计进行测定,人工海水由超纯水和海盐配制,其中海盐占比3.5%(质量分数).
1.2 试验方法
1.2.1 材料表征
利用傅里叶变换红外光谱仪(V70, Bruker, Germany)测定聚合物的化学结构;使用超导核磁共振谱仪(AVANCE Ⅲ HD 400MHz, Bruker, Switzerland)测定聚合物的氢谱以及NOESY谱;利用X射线光电子能谱仪(XPS, ESCALAB Xi+, ThermoFisher Scientific, USA)进行成分分析.
1.2.2 接触角表征
接触角通过光学接触角仪(DSA-100,Kruss)进行采集,分别将10 μL去离子水和胶液作为探测液滴到基材上进行测试,待测试液滴稳定后进行读数并拍照.
1.2.3 水下黏附性能测试
使用万能试验机(AGS-X, SHIMADZU, Japan)进行搭接剪切试验,以测量胶黏剂的黏附强度. 水下黏附过程是在去离子水中进行的,将胶黏剂均匀涂在1块基材的表面,在水下与另1块基材接触,黏附面积为20 mm × 10 mm. 没有特殊注明的情况下,黏附样品都是置于水下12 h后进行搭接剪切黏附强度测试. 同样的方法测试了在不同水环境中制备的样品的黏接强度,包括海水和不同pH水环境. 黏附强度计算方法为F/S (F为最大载荷,S为黏附面积),拉伸速度为20 mm/min,在每种情况下,至少测试4个样品,无特殊注明的情况下,测试的水下环境温度为25 ℃. 测试所用的基材,包括钢、黄铜、铝、钛、碳纤维和紫铜的粗糙度分别为1.17、0.83、1.11、0.93、1.11和0.88 μm.
2. 结果与讨论
2.1 胶黏剂的制备及表征
图1所示为主客体胶黏剂的制备以及作业过程,通过Michael加成反应设计制备了客体超支化聚合物P1,如图1(b)所示,P1由5种功能单体聚合物而成,DPEHEA是支化中心,DOPA是黏附功能基团,BENA是刚性疏水基团,PEGDA200是扩链软链段,ADAA是客体功能单元,用于与β-CD单元结合. 利用Bruker核磁共振仪表征了该聚合物,对应的核磁氢谱归属如图2(a)所示. 另外,图2(b)所示为P1的红外光谱图,可以观察到3 152 cm−1处的-OH的伸缩振动峰,2 951 cm−1处归属为-CH2 / -CH-的伸缩振动峰, 1 727 cm−1处归属为羰基C=O的伸缩振动峰, 1 172 cm−1处归属于醚键C-O的伸缩振动峰,以上结果表明成功制备了P1聚合物.
P2是β-CD封端的PDMS主体聚合物,如图1(c)所示,由β-CD和 PDMS-DGE反应制备. PDMS通过排斥界面水破坏水化膜,可以有效地抵抗水侵蚀从而保护内部的分子链,而β-CD是主体功能单元,用于与AD单元结合. 同样地,利用Bruker核磁共振仪表征了该聚合物,对应的核磁氢谱归属如图2(c)所示. 另外,图2(d)所示为P2的红外光谱图,可以发现包含1 257 cm−1处的Si-CH3的伸缩振动峰和3 370 cm−1处的-OH的伸缩振动峰. 另外,利用X射线光电子能谱仪对P2进行了元素分析,由图2(e)和(f)中XPS表征结果可以观察到Si 2p信号. 以上结果表明β-CD成功接枝到PDMS分子链上,成功制备了P2聚合物,P1和P2混合均匀后,制得主客体胶黏剂P3,置于水下后会凝集成白色的黏性固体.
2.2 水下组装的结构变化
β-CD可以在水环境中与AD及其衍生物自适应组装形成稳定的包合物,在AD与β-CD的主客体包合物形成过程中,可以将分子内部的水分子挤出,这是因为β-CD的内腔对疏水性分子AD有很好的匹配性,并且AD分子进入β-CD的内腔后,能够通过疏水相互作用稳定地与内腔组装包合,这样形成了1个稳定的主客体包合物,该包合物在水中比未形成包合物的客体分子更为稳定. 这个过程中既实现了分子链疏水排斥,又实现了AD与β-CD的有效结合,提升内聚能. 采用2D NOESY光谱研究了P3内部的主客体相互作用,如图3(a)所示,从NOESY图上可以明显地观察到到AD官能团的质子(1.25~2.02 ppm)和β-CD的内部质子(3.0~4.0 ppm)之间的显著关联信号,表明形成了稳定的包合物[28]. 通过对其表面组分的研究,揭示了其水下自凝聚的结构转变过程,如图3(b)和(c)所示,胶黏剂P3水下固化后,表面Si 2p含量占总元素的含量增加,表明P3中的PDMS分子链处于外层,因此可以保护内部的分子链,抵抗水侵蚀. 而P3表面的C-OH含量占所有C元素的含量增加,如图3(d)和(e)所示,结果表明,P3表面的C-OH含量仅占所有C元素的34.71%. 然而,当P3用水固化然后冷冻干燥时,C-OH的表面比例增加到C元素的38.92%,这表明分子链在水下增加了DOPA基团向外的暴露,从而增强了胶黏剂与基底表面的相互作用,大大促进了胶黏剂在水中的快速固化并实现强劲的水下黏附.
图 3 (a) P3的NOESY谱图;(b)去掉溶剂后的P3和用水触发的冻干P3的XPS谱图;(c)水触发前后的P3的Si 2p原子百分比;(d)去掉溶剂后P3的C 1s区的峰拟合XPS谱图;(e)水触发的冻干P3的C 1s区的峰拟合XPS谱图;(f) P1和P3在水中浸泡12 h的黏附强度Figure 3. (a) NOESY spectra of diagram of P3; (b) XPS survey spectra of dried P3 and lyophilized P3 triggered with water; (c) Si 2p atomic percentage of dried P3 and lyophilized P3 triggered with water; (d) Peak-fitting XPS spectra in the C 1s regions of dried P3; (e) Peak-fitting XPS spectra in the C 1s regions of lyophilized P3 triggered with water; (f) The adhesion strength of P1 and P3 soaking in water for 12 h2.3 水下黏附性能探究
以钢片为黏附基底,置于水下12 h,测试了P1和P3的黏附性能,如图3(f)所示,经过自适应组装形成稳定的包合物P3黏附强度为669.7 kPa,远高于单一客体超支化聚合物P1的黏附强度337.9 kPa. 为了定量地探究黏附强度与固化时间的关系,进行了不同固化时间(1、3、6、12、24和48 h)的水下黏附试验. 如图4(a)和(b)所示,当固化时间从3 h延长到12 h时,黏附强度从约171.0 kPa增加到约669.7 kPa. 固化时间的延长使得胶黏剂的内部的溶剂被置换的更彻底,并使β-CD分子和AD逐渐完成包合,从而导致黏附强度的增加. 后续黏附强度随着固化时间的增加而保持不变,表明胶黏剂在12 h后完全固化. 值得一提的是,即使黏附样品在水下放置15天后,胶黏剂仍具有最高的初始黏附强度,表明其能够承受长时间的水下浸泡. 主客体胶黏剂P3具有卓越的耐水性,这主要得益于其PDMS分子链处于胶黏剂的外层,能有效排斥界面水分,从而在水环境中避免内部的分子链受水侵蚀,因此不同于普通胶水随着时间的推移溶胀而失去黏合能力. 另外,主客体胶黏剂P3展现出了优异的可重复使用黏附特性,通过在水下进行多次黏附-分离循环试验,结果如图4(c)和(d)所示,即便经过10次循环的水下剪切试验,P3胶黏剂仍维持了良好的黏附性能,然而在第10次时,黏附强度略有减弱,可能是聚合物出现了不可逆的疲劳损伤. 这种循环重复使用性能不仅有助于降低成本,也符合绿色化学、保护环境的理念. 传统的一次性胶黏剂使用后往往成为难以处理的废弃物,而P3胶黏剂的可重复使用特性不仅可以大幅减少黏合材料的消耗,而且可以减少废弃物的产生,这有助于减轻对海洋生态系统和环境的负担.
图 4 (a)不同水下浸泡时间下P3胶黏剂在钢片上的黏附曲线;(b) P3胶黏剂在钢片上的黏附强度与水下浸泡时间的关系;(c) P3胶黏剂在钢片上的水下10次黏结-分离循环的黏附曲线;(d) P3胶黏剂在钢片上的水下10次黏结-分离循环的黏附强度Figure 4. (a) The adhesion curve of P3 to steel sheets for the different soaking time; (b) The relationship between the adhesion strength of P3 to steel sheets and the soaking time; (c) Adhesion curve of P3 to steel sheets underwater for ten adhesion-detachment cycles; (d) Adhesion strength of P3 to steel sheets underwater for ten adhesion-detachment cycles胶黏剂的润湿性是决定其黏附效果的关键因素之一,当胶黏剂的润湿性好时,胶黏剂能够充分地与基材表面接触,密切的接触有利于分子间作用力(如范德华力和氢键)的产生,从而增强黏附强度. 如图5(a)所示,P3胶黏剂在不同基材表面(有机和无机)上的接触角均小于水,这意味着当胶黏剂施加到基材上时,胶黏剂往往会取代界面水,用以在基材上获得足够的接触面积. 如图5(b)和(c)所示,测试了P3胶黏剂不同基材的水下黏附强度,在钢片、钛片、铝片、铜片、黄铜、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)、碳纤维、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)和聚氯乙烯(PVC)上的黏附强度分别为669.7、700.8、526.2、429.7、940.8、339.2、247.1、715.1、391.0、513.8和596.4 kPa. 如图6所示,与现有的水下胶黏剂进行对比,P3的黏附性能高于大多数的液态水下胶黏剂.
图 5 (a) P3胶黏剂与水在不同基材上的接触角;(b) P3胶黏剂在水中浸泡12 h后在不同基材上的黏附曲线;(c) P3胶黏剂在水中浸泡12 h后在不同基材上的黏附强度Figure 5. (a) Contact angles of P3-adhesive and water on different substrates; (b) Adhesion curve of P3-adhesive to different substrates after soaking in water for 12 h; (c) Adhesion strength of P3-adhesive to different substrates after soaking in water for 12 h为了扩大其应用范围,研究了P3胶黏剂在不同环境下的黏附性能,对浸泡在pH值为3.2~11.8的水溶液中的钢基材进行剪切黏合测试. 在这些试验中,将片材在不同 pH 值的溶液中黏合并浸泡 12 h,如图7(a)和(b)所示,结果表明,该胶黏剂在较宽的pH范围(pH 3.2~11.8)内仍然可以稳定工作. 为了进一步探索P3胶黏剂在更复杂和实际的应用环境(例如含盐环境)中的黏附性能,将各种黏合基材在人造海水中放置12 h进行黏附测试,如图7(c)和(d)所示,在钢片、钛片、铝片、铜片、黄铜、PET、PI、碳纤维、PMMA、PC和PVC上的黏附强度分别为615.8、562.1、613.1、449.8、673.2、176.9、166.7、726.1、303.5、417.6和 561.5 kPa. 整体看来,黏附强度受海水环境的变化影响较小,这可能与PDMS分子链的耐海水侵蚀性有关[29]. 该结果表明 P3胶黏剂在实际应用环境中具有良好的稳定性,这一特性对于其用于水下工程作业具有积极意义.
图 7 (a) P3胶黏剂在不同pH介质中浸泡12 h后在钢片上的黏附曲线;(b) P3胶黏剂在不同pH介质中浸泡12 h后在钢片上的黏附强度;(c) P3胶黏剂在人工海水中浸泡12 h后在不同基材上的黏附曲线;(d) P3胶黏剂在人工海水中浸泡12 h后在不同基材上的黏附强度Figure 7. (a) Adhesion curve of P3-adhesive to steel sheets after soaking in different pH media for 12 h; (b) Adhesion strength of P3-adhesive to steel sheets after soaking in different pH media for 12 h; (c) Adhesion curve of P3-adhesive to different substrates after soaking in artificial seawater for 12 h; (d) Adhesion strength of P3-adhesive to different substrates after soaking in artificial seawater for 12 h3. 结论
a. 本文中报道了1种新型策略,以水为触发开关,通过金刚烷和β-环糊精的主客体作用在水下自适应组装形成稳定的包合物实现高强度水下黏附.
b. 该胶黏剂可以在多种水环境(超纯水、酸和碱溶液、海水)中直接作业,并对多种基材表现出强大的黏合性且随时间延长黏附强度没有明显降低. 另外,该胶黏剂表现出可循环使用性,有助于减轻对海洋生态系统和环境的负担.
-
图 3 (a) P3的NOESY谱图;(b)去掉溶剂后的P3和用水触发的冻干P3的XPS谱图;(c)水触发前后的P3的Si 2p原子百分比;(d)去掉溶剂后P3的C 1s区的峰拟合XPS谱图;(e)水触发的冻干P3的C 1s区的峰拟合XPS谱图;(f) P1和P3在水中浸泡12 h的黏附强度
Figure 3. (a) NOESY spectra of diagram of P3; (b) XPS survey spectra of dried P3 and lyophilized P3 triggered with water; (c) Si 2p atomic percentage of dried P3 and lyophilized P3 triggered with water; (d) Peak-fitting XPS spectra in the C 1s regions of dried P3; (e) Peak-fitting XPS spectra in the C 1s regions of lyophilized P3 triggered with water; (f) The adhesion strength of P1 and P3 soaking in water for 12 h
图 4 (a)不同水下浸泡时间下P3胶黏剂在钢片上的黏附曲线;(b) P3胶黏剂在钢片上的黏附强度与水下浸泡时间的关系;(c) P3胶黏剂在钢片上的水下10次黏结-分离循环的黏附曲线;(d) P3胶黏剂在钢片上的水下10次黏结-分离循环的黏附强度
Figure 4. (a) The adhesion curve of P3 to steel sheets for the different soaking time; (b) The relationship between the adhesion strength of P3 to steel sheets and the soaking time; (c) Adhesion curve of P3 to steel sheets underwater for ten adhesion-detachment cycles; (d) Adhesion strength of P3 to steel sheets underwater for ten adhesion-detachment cycles
图 5 (a) P3胶黏剂与水在不同基材上的接触角;(b) P3胶黏剂在水中浸泡12 h后在不同基材上的黏附曲线;(c) P3胶黏剂在水中浸泡12 h后在不同基材上的黏附强度
Figure 5. (a) Contact angles of P3-adhesive and water on different substrates; (b) Adhesion curve of P3-adhesive to different substrates after soaking in water for 12 h; (c) Adhesion strength of P3-adhesive to different substrates after soaking in water for 12 h
图 7 (a) P3胶黏剂在不同pH介质中浸泡12 h后在钢片上的黏附曲线;(b) P3胶黏剂在不同pH介质中浸泡12 h后在钢片上的黏附强度;(c) P3胶黏剂在人工海水中浸泡12 h后在不同基材上的黏附曲线;(d) P3胶黏剂在人工海水中浸泡12 h后在不同基材上的黏附强度
Figure 7. (a) Adhesion curve of P3-adhesive to steel sheets after soaking in different pH media for 12 h; (b) Adhesion strength of P3-adhesive to steel sheets after soaking in different pH media for 12 h; (c) Adhesion curve of P3-adhesive to different substrates after soaking in artificial seawater for 12 h; (d) Adhesion strength of P3-adhesive to different substrates after soaking in artificial seawater for 12 h
-
[1] Shirmohammadli Y, Pizzi A, Raftery G M, et al. One-component polyurethane adhesives in timber engineering applications: a review[J]. International Journal of Adhesion and Adhesives, 2023, 123: 103358. doi: 10.1016/j.ijadhadh.2023.103358.
[2] Ma Yufeng, Kou Zhimin, Hu Yun, et al. Research advances in bio-based adhesives[J]. International Journal of Adhesion and Adhesives, 2023, 126: 103444. doi: 10.1016/j.ijadhadh.2023.103444.
[3] Montazerian H, Davoodi E, Baidya A, et al. Bio-macromolecular design roadmap towards tough bioadhesives[J]. Chemical Society Reviews, 2022, 51(21): 9127–9173. doi: 10.1039/d2cs00618a.
[4] Heinzmann C, Weder C, de Espinosa L M. Supramolecular polymer adhesives: advanced materials inspired by nature[J]. Chemical Society Reviews, 2016, 45(2): 342–358. doi: 10.1039/c5cs00477b.
[5] Cui Chunyan, Liu Wenguang. Recent advances in wet adhesives: adhesion mechanism, design principle and applications[J]. Progress in Polymer Science, 2021, 116: 101388. doi: 10.1016/j.progpolymsci.2021.101388.
[6] Fan Hailong, Gong Jianping. Bioinspired underwater adhesives[J]. Advanced Materials, 2021, 33(44): 2102983. doi: 10.1002/adma.202102983.
[7] Cai Chao, Chen Zhen, Chen Yujie, et al. Mechanisms and applications of bioinspired underwater/wet adhesives[J]. Journal of Polymer Science, 2021, 59(23): 2911–2945. doi: 10.1002/pol.20210521.
[8] Waite J H, Tanzer M L. Polyphenolic substance of mytilus edulis: novel adhesive containing L-dopa and hydroxyproline[J]. Science, 1981, 212(4498): 1038–1040. doi: 10.1126/science.212.4498.1038.
[9] Hofman A H, van Hees I A, Yang Juan, et al. Bioinspired underwater adhesives by using the supramolecular toolbox[J]. Advanced Materials, 2018, 30(19): e1704640. doi: 10.1002/adma.201704640.
[10] 彭宪宇, 马传栋, 纪佳馨, 等. 海洋生物水下粘附机理及仿生研究[J]. 摩擦学学报, 2020, 40(6): 816–830]. doi: 10.16078/j.tribology.2020028. Peng Xianyu, Ma Chuandong, Ji Jiaxin, et al. Underwater adhesion mechanisms and biomimetic study of marine life[J]. Tribology, 2020, 40(6): 816–830 doi: 10.16078/j.tribology.2020028
[11] Maier G P, Rapp M V, Waite J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J]. Science, 2015, 349(6248): 628–632. doi: 10.1126/science.aab0556.
[12] Priemel T, Palia G, Förste F, et al. Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels[J]. Science, 2021, 374(6564): 206–211. doi: 10.1126/science.abi9702.
[13] Wang Zhao, Wan Xizi, Wang Shutao. Bioinspired chemical design to control interfacial wet adhesion[J]. Chem, 2023, 9(4): 771–783. doi: 10.1016/j.chempr.2023.02.012.
[14] Zhang Chao, Wu Baiheng, Zhou Yongsen, et al. Mussel-inspired hydrogels: from design principles to promising applications[J]. Chemical Society Reviews, 2020, 49(11): 3605–3637. doi: 10.1039/C9CS00849G.
[15] Chen Jingsi, Peng Qiongyao, Liu Jifang, et al. Mussel-inspired cation-π interactions: wet adhesion and biomimetic materials[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2023, 39(49): 17600–17610. doi: 10.1021/acs.langmuir.3c02818.
[16] Chen Jingsi, Zeng Hongbo. Designing bio-inspired wet adhesives through tunable molecular interactions[J]. Journal of Colloid and Interface Science, 2023, 645: 591–606. doi: 10.1016/j.jcis.2023.04.150.
[17] Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives[J]. Chemical Society Reviews, 2021, 50(23): 13321–13345. doi: 10.1039/d1cs00316j.
[18] Narayanan A, Menefee J R, Liu Qianhui, et al. Lower critical solution temperature-driven self-coacervation of nonionic polyester underwater adhesives[J]. ACS Nano, 2020, 14(7): 8359–8367. doi: 10.1021/acsnano.0c02396.
[19] Seo S, Das S, Zalicki P J, et al. Microphase behavior and enhanced wet-cohesion of synthetic copolyampholytes inspired by a mussel foot protein[J]. Journal of the American Chemical Society, 2015, 137(29): 9214–9217. doi: 10.1021/jacs.5b03827.
[20] Sha Xinyi, Zhang Changxu, Qi Meiwei, et al. Mussel-inspired alternating copolymer as a high-performance adhesive material both at dry and under-seawater conditions[J]. Macromolecular Rapid Communications, 2020, 41(10): e2000055. doi: 10.1002/marc.202000055.
[21] Xu Ying, Liu Qianhui, Narayanan A, et al. Mussel-inspired polyesters with aliphatic pendant groups demonstrate the importance of hydrophobicity in underwater adhesion[J]. Advanced Materials Interfaces, 2017, 4(22): 1700506. doi: 10.1002/admi.201700506.
[22] Dompé M, Cedano-Serrano F J, Heckert O, et al. Thermoresponsive complex coacervate-based underwater adhesive[J]. Advanced Materials, 2019, 31(21): 1808179. doi: 10.1002/adma.201808179.
[23] Dompé M, Cedano-Serrano F J, Vahdati M, et al. Underwater adhesion of multiresponsive complex coacervates[J]. Advanced Materials Interfaces, 2020, 7(4): 1901785. doi: 10.1002/admi.201901785.
[24] van Hees I A, Hofman A H, Domp\'e M, et al. Temperature-responsive polyelectrolyte complexes for bio-inspired underwater adhesives[J]. European Polymer Journal, 2020, 141: 110034. doi: 10.1016/j.eurpolymj.2020.110034.
[25] Cui Chunyan, Fan Chuanchuan, Wu Yuanhao, et al. Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis[J]. Advanced Materials, 2019, 31(49): 1905761. doi: 10.1002/adma.201905761.
[26] Soum C, Rubio-Albenque S, Fery-Forgues S, et al. Supramolecular peptide/surface assembly for monitoring proteinase activity and cancer diagnosis[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 16967–16975. doi: 10.1021/acsami.5b04871.
[27] Ahmadi H, Javanbakht M, Akbari-adergani B, et al. Photo-grafting of β-cyclodextrin onto the polyethersulfone microfiltration-membrane: fast surface hydrophilicity improvement and continuous phthalate ester removal[J]. Journal of Applied Polymer Science, 2019, 136(24): 47632. doi: 10.1002/app.47632.
[28] Hou Junbo, Zhang Xiaoqin, Wu Di, et al. Tough self-healing elastomers based on the host-guest interaction of polycyclodextrin[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 12105–12113. doi: 10.1021/acsami.9b00626.
[29] Lu Shuo, Zhao Piqi, Liang Chen, et al. Utilization of Polydimethylsiloxane (PDMS) in polymer cement-based coating to improve marine environment service performance[J]. Construction and Building Materials, 2023, 367: 130359. doi: 10.1016/j.conbuildmat.2023.130359.