-
摘要:
作为天然可再生高分子材料,木质材料具有环境友好以及加工和维护成本低等优点,在许多行业具有广泛的应用. 然而,在加工和使用过程中,木质材料遇到的摩擦磨损问题制约了其高端应用. 近年来,研究人员针对木质材料摩擦学开展了大量研究工作. 本文中介绍了木质材料的物理结构、化学组成和力学特性,分析了基础物理性质及工艺条件对摩擦学性能的影响,综述了木质材料相关摩擦学性能在木材加工、土木工程、家居行业和复合材料行业等不同场景下的应用和先进木质材料在高强度材料、光管理材料、热管理材料和工程结构材料等方面的应用研究,提出了木质材料摩擦学研究中存在的问题,对木质材料摩擦学的未来研究方向做出展望.
Abstract:Owning sustainable properties, natural wood materials with the environmental-friendly performance can offer numerous advantages at the low cost for fabrication and maintenance in many engineering fields. Recently, natural wood materials have attracted great attention for a wide range of renewability due to biodegradability and multifunctionality. However, due to the tribological phenomena during the processing and the utilization, the advanced applications of natural wood materials are still challenged. Owing to the anisotropic structure, natural wood materials exhibit non-linear characteristics in mechanic performance. So many researchers have focused on the complex relationship between the hierarchically porous structure and mechanic property. From the perspective of wood processing, the development in engineering application might benefit from the tribological research.
It has been found that the natural wood’s tribological performance have been influenced by its physical properties, chemical components and processing parameters. In terms of physical properties of wood, timber’s tribological performance have been affected by the water content of the wood, the texture direction and the roughness on wood surface. From the point of view of chemical component, both modified wood and wood extractive might improve the friction-reduction and wear-resistance. As far as the processing parameters are concerned, the sliding velocity between the friction pairs, the temperature at the friction interface and the applied loads could make an impact on timber’s tribological behavior. The positive consequence from processing parameters obviously can promote the technical level of wood industry.
Recent progress on the tribology of timber is presented in various application scenarios. The diversified timber tribology has been developed with the sustained progress of industrial technology. In the traditional wood processing, cutting technique is still important. So timber tribology is meaningful for the utilization and preservation of cutting tools. For the mortise-tenon connection in civil engineering, static friction force plays an important role to stabilize the wood construction. With the rising of intelligent household industries, timber tribology has been taken into account at the design stage. The friction wood welding technique has been exploited to connect the different wood components. Wood-plastic composites and wood ceramic have also been investigated to improve tribological performance.
Recently, diverse kind of modified wood-based materials and techniques have attracted the researcher’s attention due to their multifunction. The potential applications of high strength materials, transparent materials for light management, thermal interface materials and structural materials in engineering have been presented. The disadvantages of timber tribological research have been also concerned. The preliminary prospect on the research of timber tribology has been carried out.
-
Keywords:
- wood materials /
- processing property /
- tribology /
- wear behavior
-
木质材料属于各向异性的非均质天然高分子复合材料,其组织结构和力学性能之间的关系比较复杂,木质材料的力学特性常常表现出非线性特点,导致木质材料相关的基础研究不够全面,从而影响了木质材料的高端功能化应用. “科学地使用木质材料,就须了解木质材料”[1],本文中综述了木质材料的摩擦学性能研究,有利于理解木质材料的磨损行为和提升对木质材料工艺性质的认识.
人类对摩擦现象的认识具有漫长而曲折的历史,钻木取火被视作木质材料摩擦学在历史上的标志性应用,对人类文明的发展和传承具有重要意义. 在中国古代,摩擦学相关技术为社会发展做出了巨大贡献,木质材料被用作机械制造的关键材料,中国古代工匠通过结构设计和材料选择优化耐磨技术,提高木质滑动轴承耐磨性,延长车辆使用寿命[2-3].
从专业学科角度而言,摩擦学在人类文明早期发展较为缓慢. 直到15世纪,意大利学者Leonardo da Vinci[4]以木质材料为研究对象并依据研究结果提出相关理论,摩擦学从此进入科学理论研究的发展阶段. 上世纪50年代,Bowden和Tabor等[5]以木质材料为对象开展摩擦学研究,完善经典摩擦学理论模型. 上世纪60年代, Jost博士向英国政府提交Jost报告,提出摩擦学(tribology)的名词,从此摩擦学逐渐成为独立学科.
随着现代工业技术的进步及其在摩擦学领域的广泛应用,木质材料摩擦学研究呈现出新方向和新特色. 上世纪90年代至今,伴随着材料科学、化学工程、力学和机械工程等学科的发展,木质材料摩擦学在基础研究层面和木质材料加工过程得到较为全面的发展. 先进技术方法被广泛使用于木质材料的结构和性能测试,如扫描电子显微镜和原子力显微镜等被用于揭示木质材料的表面形貌和纤维结构等物理结构对摩擦学性能的贡献,X射线光电子能谱和拉曼光谱等被用于分析木质材料摩擦副表面的化学组成,纳米压痕仪和动态热机械分析仪等被用于分析木质材料的力学性能. 信息技术加速了现代工业的发展,但木质材料作为结构用材依然占据一席之地. 随着各国政府日趋严苛的环保政策逐渐落实,可再生的天然木质材料在材料循环利用方面具有明显的应用优势.
1. 木质材料的物理结构、化学组成和力学特性
天然植物经历长达亿万年的进化过程,形成了多种多样的复合结构,因而具备了适应自然环境的独特力学性能. 对天然植物而言,实现其生命功能的基本单位是植物细胞,由原生质体和细胞壁组成,其中,细胞壁对天然植物材料的宏观力学性能具有重要影响. 细胞壁作为接触界面的实际承载结构,在木质材料力学研究中被视作从宏观尺度进入微观尺度的最佳桥梁[6],因此,以细胞壁为主要研究对象的木质材料细胞壁力学[7]是木质材料科学研究领域的热点.
植物细胞壁由纤维素、半纤维素、木质素和果胶4种基本物质组成. 植物细胞在不同尺寸下形态复杂多样、结构成分和含量各异,形成尺寸各异的分级微观结构. 具有天然可再生属性的木质材料由多级微纳米结构构成,其力学性能取决于物理结构和化学组成[8].
碳、氢和氧等元素组成纤维素分子形成纤维素分子链,纤维素分子链之间依靠氢键作用形成具有结晶结构的基本纤丝后,形成微纤丝进而组成纤丝,如图1所示. 木质材料的细胞壁微观结构可视为微纤丝作为增强相,镶嵌于由木质素作为填充剂和半纤维素作为粘合剂的基体中,构成多级微纳米复合结构.
李大纲[9]研究发现,木质材料细胞壁组织结构与其力学特性之间具有非常复杂的关系,木质材料受到外力作用后由于木质材料细胞壁及各细胞之间产生复杂的微观断裂损伤表现为宏观破坏. 邵卓平和任海青等[10]研究了杉木的横纹断裂性质并阐述了木质材料强韧机理,给出木质材料横纹裂纹的扩展方式和扩展过程,指出木质材料具有很强抗横断韧性的原因在于具有纤维增强的多层胞壁结构. 林兰英和傅峰等[11]研究指出细胞壁力学性能是由壁层结构、化学组成的分布和结合方式决定的,提出了界面力学是决定木基复合材料整体力学性能的关键,是导致木质材料变形和强度下降主要原因. 田煜等[12]讨论了木竹材料的力学性能及其影响因素,建立力学模型,分析了载荷、滑动速度、温度以及纤维方向和密度对摩擦学性能的影响,并且讨论了磨损机理.
2. 木质材料物理结构和性质及常规工艺条件对摩擦学性能的影响
木质材料摩擦学性能的优劣通常将摩擦系数大小作为评价的重要因素,近年来针对木质材料的摩擦学性能研究发现,摩擦系数与木质材料的物理结构和化学性质如含水率、纹理方向和木材抽提物等密切相关,此外,摩擦系数也受到摩擦副相对滑动速度、摩擦副表/界面温度和施加载荷等工艺条件的影响[12-13].
2.1 木质材料物理结构和化学性质对摩擦学性能的影响
2.1.1 含水率与木质材料摩擦磨损性能关联性的研究
木质材料的生长成材过程中,水的作用极为关键,木质材料的基本物理性质与含水率之间存在复杂的关联性,木质材料含水率影响着木质材料加工和使用过程. 衡量木质材料含水率的重要指标是纤维饱和点,木质材料的纤维饱和点[14]是指细胞壁中吸附水达到饱和,细胞腔和细胞间隙中无自由水存在时对应的含水率,纤维饱和点往往对应于木质材料基本物理性质的变化转折点. 木质材料含水率达到纤维饱和点之上时,其基本物理性质相对稳定,当含水率处在纤维饱和点以下时,木质材料的基本物理性质随含水率不同出现明显变化.
Atack和Tabor[15]提出水分含量对木质材料摩擦学性能具有重要影响,并利用表面存在黏着和犁沟变形解释木质材料的摩擦学行为. McKenzie和Karpovich[16]研究木质材料在干、湿2种状态下的摩擦性能,发现在中、低滑动速度下,湿木质材料的摩擦系数大于干木质材料. Murase[17]研究了在不同载荷和含水率条件下木质材料的摩擦学性能,发现木质材料摩擦系数随含水率增加而升高. Guan等[18]分析了木质材料含水率和摩擦副滑动速度对摩擦系数的影响,以及探讨不同含水率条件下摩擦系数随摩擦时间的变化,将摩擦系数增加归因于木质材料表面水分含量在摩擦过程中发生变化.
张占宽等[19-20]进行闭式切削试验,发现不同种类木质材料含水率显著影响切削力. 试验过程中,作用于杉木的主切削力和法向力均呈现减小趋势,作用于樟子松和水曲柳的主切削力表现为先增大后减小趋势. 对于中密度纤维板和刨花板,主切削力和法向力都随含水率升高而增大.
2.1.2 纹理方向与木质材料摩擦磨损性能关联性的研究
树木在生长期内受到季节、环境温度和湿度等因素影响,能够成长为不同质地、不同颜色甚至不同微观结构的新材[21]. 处于不同生长阶段和不同环境的木质材料,其微观组织排列规律和组织间抽提物的差异不同,导致其纹理的差异性. 由于表面纹理各异,加工过程中经常采用锯剖和切削等不同工艺方法对木质材料进行加工.
中国林业科学研究院胡荣[22]采用Kollmann磨损实验机考察了10种针和阔叶树材的磨损率,并讨论了影响耐磨性的因素,并提出实际利用时应考虑木质材料的摩擦面. 摩擦副滑动方向和木质材料纹理方向之间的匹配会影响摩擦系数[23-24],如图2(a)所示,当不同摩擦副表面纹理方向平行且与滑动方向垂直交叉时,摩擦系数最大,归因于划痕和迟滞导致摩擦力较大. 当不同摩擦副表面纹理方向平行且与滑动方向保持平行,对应摩擦系数减小,如图2(b)所示. 摩擦副与另一摩擦副纹理方向互相垂直并且与滑动方向保持平行时,对应的摩擦系数最小,如图2(c)所示,推测此条件下纤维分子容易通过摩擦副间隙使摩擦副之间的黏附力降低,导致摩擦系数减小.
2.1.3 表面粗糙度与木质材料摩擦磨损性能关联性的研究
在加工过程中,导管、管胞、木射线和树脂道等组织结构在木质材料表面持续显示于新鲜切面表面,各种复杂结构在木质材料表面显现为凹凸和沟槽. 此外,不同精度的加工工具也会在木质材料表面形成凹凸和沟槽,凹凸和沟槽导致木质材料表面表现出特定粗糙度.
Klamecki[25]研究了杉木低速正交切削时,摩擦系数随法向载荷和刀具表面粗糙度的变化规律. Ohtani等[26]研究表明,木质材料表面的粗糙程度与摩擦系数之间存在相关性,平整光滑的木质材料表面摩擦副之间黏着作用较强,导致摩擦系数增大,粗糙度较大的摩擦副表面存在显著的犁沟效应会导致摩擦系数升高,因此,随表面粗糙度增加,摩擦系数会呈现先减小后增大的趋势. 从接触性质角度分析,弹性接触的光滑表面增加了实际接触面积,会导致摩擦系数增大;塑性接触条件下,表面粗糙度对摩擦副之间的实际接触面积影响较小,对摩擦系数影响较小[27].
2.1.4 改性木质材料的摩擦学性能研究
针对多种天然木质材料的力学性能存在短板,研究人员采用物理或化学方法对天然木质材料处理改性[28-33],增强其基础力学性能. Waßmann等[29]研究了改性山毛榉木质材料的摩擦学性能,发现蜂蜡浸渍和压缩的木质材料表现出最低摩擦系数,能够大幅降低与钢之间的磨损. Yuan等[33]针对天然多孔木质材料氟化改性,揭示了浸泡和氟化浸泡处理提升摩擦学性能的机理,结果发现,氟化浸泡处理有利于润滑油在多孔结构中的吸附和储存,在摩擦过程中,润滑油被挤出并在接触界面形成润滑薄膜,有助于摩擦状态趋于稳定和平滑. Brischke等[34]利用热改性、三聚氰胺树脂处理、乙酰化以及糠醛化等技术对木质材料进行改性并研究了木质材料改性前后的摩擦学性能,结果发现,改性木质材料的耐磨性取决于细胞壁改性技术和施加载荷类型.
2.1.5 木质材料抽提物对木质材料摩擦学性能的影响
作为天然有机材料,木质材料由纤维素、半纤维素、木质素和木质材料抽提物组成[35]. 木质材料抽提物中含有多种化学物质,其中树脂、脂肪和蜡等均会影响摩擦磨损性能[36]. McLaren等[37]研究愈创木的摩擦学性能时发现木质材料抽提物和试验温度对摩擦系数影响较大. Svensson等[38]研究发现,在摩擦副高速滑动条件下,木质材料抽提物能够降低摩擦力,归因于木质材料抽提物在摩擦副之间形成润滑薄层,降低了摩擦力. Yuan等[39]研究了3种代表性木材的解剖构造与摩擦学性能的关联,发现解剖构造对木质材料摩擦学性能影响较大,充足的木质材料抽提物具有优异的减摩抗磨作用,愈创木具有最佳耐磨性能得益于最厚的细胞壁厚度、最紧密的细胞壁排列方式和高含量的树脂类抽提物. 屈荣等[40]基于松香在提琴类乐器中的作用提出利用往复运动形式评价其摩擦学特性, 认为减摩作用、黏滑现象和粉化现象是3种松香涂层的典型摩擦学特性,从摩擦学层面对于提琴类乐器提升音质和改善音色具有重要意义.
2.2 工艺条件对木质材料摩擦学性能的影响
2.2.1 摩擦副相对滑动速度对摩擦学性能的影响
随着摩擦副相对滑动速度的增加,木质材料摩擦系数呈现增大趋势. 丘湘荣[41]采用新型木质材料高速切削试验装置,探究切削速度对切削现象和切削阻力的影响. Dvoracek等[42]讨论了不同种类木质材料加工过程中的关键步骤,从切削速度、含水率、未切削木屑厚度和切削纤维角度等因素,分析不同工艺条件对切削过程的影响,结果发现,切削速度是影响切削力的主要因素,该研究建立了切削力预测模型,并将其嵌入网络应用程序.
对于具有不同含水率的木质材料而言,摩擦副相对滑动速度对摩擦系数的影响较为复杂[13]. 木质材料含水率较低时,摩擦系数随摩擦副相对滑动速度增加而增大,其原因为表面的接触区域温度升高导致摩擦副表面软化甚至塑性流变[5]. 当木质材料含水率增加时,较高含水率能够抑制摩擦副接触区域温度升高,从而延缓摩擦系数上升. 木质材料含水率较高时,摩擦系数随相对滑动速度的增大而降低,归因于较高含水率降低了摩擦副之间的稳定接触点数量,导致粘结强度下降,同时,自由水在摩擦副接触区域形成润滑薄膜.
2.2.2 摩擦副表/界面温度对摩擦学性能的影响
摩擦过程中,部分机械能会转化为热能而耗散,导致木质材料摩擦副表面温度升高,影响系统整体运行的稳定性,同时摩擦系数发生变化. 当积累的热能达到一定程度时,摩擦副表面温度升高会改变木质材料的强度,甚至达到着火点.
钻木取火被视作木质材料摩擦学改变人类历史进程的重要应用,Liu等[43]设计并实现了木质材料摩擦生火试验,考察了木质材料摩擦系数与着火点温度的关联性. Iida等[44]使用高速旋转的金属盘还原木质材料摩擦过程中的热效应,结果发现,摩擦热导致木质材料表面出现局部高温区域,从而发生严重变形,表面纤维角度取向和摩擦副相对运动速度能够影响摩擦生热产生的变形区域. Stamm等[45]对云杉和山毛榉的摩擦焊接过程进行研究,发现摩擦过程中摩擦系数和摩擦副表/界面温度的变化对应6个不同阶段并列于表1中.
表 1 木质材料摩擦焊接过程中界面温度和摩擦系数的变化[45]Table 1. Variation of interfacial temperature and friction coefficient in wood friction process[45]Stage Temperature/℃ The variation of the friction coefficients with the temperature during the friction process 1 25~140 In the initial stage, the friction coefficient sharply with the increasing temperature, and then the moisture evaporation from the tribological interfaces lead to the slope of increasing temperature and friction coefficient slows down, the wood surface becomes smooth 2 140~320 The friction coefficient keeps stable, and the temperature of tribological interface ascends linearly 3 320~380 The friction coefficient becomes higher due to the decomposition of cell wall; there are lubrication phenomena between the tribological mates 4 420~440 The achievement of the maximal temperature leads to an equilibrium of temperature as well as the friction force 5 440 The equilibrium of the friction force maintains until termination of the frictional movement 6 440~25 The specimen has been cooled, and this process leads to the completion of the connection 2.2.3 施加载荷对摩擦学性能的影响
施加载荷大小直接影响摩擦副的接触状态,呈现出不同摩擦特性. 当摩擦副表面保持相对匀速滑动条件下,木质材料摩擦副表面的微观接触点随施加载荷增大而增多,导致实际接触面积和表面塑性变形随之变大,摩擦系数升高. 当施加载荷持续增大到一定数值之后,摩擦副表面实际接触面积不再增加,随着施加载荷继续增大,摩擦系数反而有减小趋势.
McKenzie等[16]研究了摩擦过程中木质材料与金属摩擦之间的接触面积与施加载荷的关系,发现基本规律是随施加载荷和摩擦副表面接触面积的增加,摩擦系数呈现升高趋势,但是较高含水率木质材料的摩擦系数随施加载荷增加而减小,归因于摩擦副间隙中自由水的流体动压效应.
3. 木质材料摩擦学在多种行业领域中的相关应用
随着现代工业技术进步,用于木质材料性能测试的仪器装置不断推陈出新,木质材料摩擦学的研究随之呈现多样化特征并应用于多种不同行业领域.
3.1 木材传统加工技术中木质材料摩擦学的应用
加工工艺条件对木质材料摩擦学性能影响较大,加工过程中,克服加工工具与木质材料表面之间的摩擦力能够消耗较多能量[46],如图3所示. 过高的摩擦力会降低切削效率和加工工具(木工刀具)的正常工作寿命,因此,降低摩擦系数是木质材料加工过程中的重要问题.
李伟光等[13]考察了加工过程中木质材料的类型、密度、接触面积和压力、速度以及温度等因素与摩擦系数的相关性. Seki等[47]研究了酚醛树脂浸渍木质材料加工过程中的摩擦学性能,结果发现,酚醛树脂浓度与摩擦系数存在相关性. 低于浸渍木质材料软化温度140 ℃时,酚醛树脂的润滑作用导致摩擦系数下降,高于浸渍木质材料软化温度时,作用于摩擦副接触面的滑动阻力增大,摩擦系数增大.
Kamboj等[48]探究了热改性木质材料加工过程中影响切削力的因素,针对热改性柳桉木样品,采用不同加工参数如切削速度、切削角度和进给速度等评估加工表面质量和切削功率. 结果发现,切削参数对加工表面的质量有显著影响,而切削功率随改性温度的升高而降低.
为控制磨损,表面织构技术被用于优化木工刀具的表面形态结构,改善木质材料与刀具接触状况,进而提升切削性能[49-52]. 表面微织构的图案类型主要包括方凸型、微坑型、凹槽型以及交叉线网状凹槽型等[53],如图4所示. 相关研究表明[54],微织构硬质合金刀具表面具有较强的亲水性,微坑型织构表面能有效降低木质材料与刀具之间的摩擦系数,切削机理因木质材料含水率和施加载荷等因素影响而有所不同.
Li等[46, 55]讨论了硬质合金刀具在切削木质材料过程中的摩擦学行为,如图5所示. 发现切削过程中,织构参数对摩擦系数影响较大,微织构表面的摩擦系数小于光滑平面的摩擦系数. 合理的表面织构图案可以有效降低切削木质材料时的摩擦系数,延长刀具使用寿命.
如图6所示,硬质合金刀具表面涂层能够隔绝化学和热的影响,降低温度和切削力的影响,减少摩擦和粘接,延长刀具使用寿命[56-61]. 摩擦副之间的涂层转移膜将摩擦副之间的摩擦转变为涂层和转移膜的摩擦,提高了刀具耐磨性[59]. Wu等[60]考察了物理气相沉积薄膜和不同木质材料作为运动副条件下的摩擦磨损性能,提出了物理气相沉积薄膜作为基底材料与不同木质材料配副对摩擦学性能的影响,结果表明,三元碳氮化硼(B-C-N)涂层可以有效提高加工工具的耐磨性.
Nadolny等[62]讨论了物理气相沉积(PVD)的CrCN/CrN涂层对刨刀耐久性和磨损强度的影响,研究发现,刨刀表面涂覆CrCN/CrN后耐磨性和摩擦学性能显著提高. 由于具有优异的耐热性、耐磨性、高硬度以及化学稳定性[63-65],Al2O3基和Si3N4基陶瓷刀具被应用于木质材料加工. Guo等[66-67]分析了木质材料加工过程中Al2O3和Si3N4刀具的切削性能,结果发现,切削力和表面粗糙度随切削速度增加呈现下降趋势,由于Si3N4陶瓷刀具化学稳定性高于Al2O3陶瓷刀具,适合用于切削含有提取物的木质材料. 张执南等[68]提出了基于特征迁移的磨损预测模型,有利于解决多工况场景下刀具样本不足问题,为预测刀具磨损和实时监测提供了参考依据.
3.2 建筑工程行业中作用于结构部件的木质材料摩擦学应用
摩擦力对木结构设计具有重要影响,中国传统建筑中的榫卯(M-T)连接的木结构中,摩擦力的作用尤其重要[69-71]. 榫卯结构中,摩擦力伴生于正压力,能够阻碍结构变形,有利于保持木结构整体的安全稳定,如图7所示,由于摩擦力并非木结构中的主动力,忽略摩擦力往往会增大设计过程中的计算误差. 现代建筑工程行业趋向于计算型设计,要求精确控制木质构件间的摩擦力范围,研究木质构件间的摩擦现象有助于理解摩擦学行为与木质结构稳定性的关联.
孟庆军[72]构建了轻型木质构件间的接触模型,根据离散元方法求解接触摩擦问题. 基于Ansys仿真软件,建立简化版轻型木质结构房屋的三维有限元模型,对侧向力作用下木质材料与人造板材之间的摩擦力进行仿真计算. 高永林[73]基于木质材料摩擦机理和嵌压特性,对传统木结构典型榫卯节点(台阶透榫、梁下有枋台阶透榫、半榫以及燕尾节点等)进行试验分析和理论计算,研究了摩擦对榫卯节点抗震性能的影响. 结果发现,摩擦系数变化对半榫节点和燕尾榫节点的滞回环面积影响最大和最小;摩擦系数变化对透榫台阶节点、梁下有枋的透榫台阶节点和半榫节点模型的初始刚度影响较大,而对燕尾榫节点模型没有明显影响.
胡文刚等[74]建立了椭圆榫接合节点抗拔力数学模型,对榫接合节点的摩擦特性进行研究,并试验验证了在平面接触下木质材料的接触面纹理角度、接触面积和接触压力等因素对摩擦系数无明显影响. Hu等[75]建立新的半刚性榫卯连接数值模型,并采用有限元模型分析其力学性能和摩擦特性,结果表明,胶合榫卯接头系数、分布和强度等能够有效确定木榫卯接头的力学性能. Fu等[76]研究了山毛榉木榫卯结构中含水率和木质材料截面对动静摩擦系数的影响,结果发现,动静摩擦系数随着含水量增加呈现增加趋势.
3.3 家居行业中木质材料摩擦学的应用
木质商品在家居行业中被广泛应用,许多木质产品的设计和使用过程中考虑了摩擦学性能. 体育场馆中的木质地板表面要求摩擦系数适中,过大或者过小的摩擦力会导致运动员疲劳或受伤. 陈豪杰等[77]研究了涂料种类、涂层厚度和素板表面粗糙度对体育地板的滑动摩擦系数的影响,结果发现,对滑动摩擦系数影响最关键因素是素板表面粗糙度. 刘振东等[78]考察了常用实木地板对橡胶和不锈钢的摩擦磨损性能,结果表明,橡胶对多数地板的摩擦系数大于0.5,且均大于不锈钢对地板的摩擦系数. 此外,施加载荷小于地板临界载荷时,施加载荷增加几乎不影响磨损量;当施加载荷大于临界载荷条件下,地板磨损随着施加载荷增加明显加快.
木质人造板材在家居行业中被广泛应用[79],木质人造板材主要有胶合板、刨花板、纤维板和细木工板等4大类产品,其深加工产品多达上百种[80-81]. Kukla等[82]测试了刨花板、中密度纤维板和定向刨花板等人造板材的摩擦学性能,结果发现,中密度纤维板的静摩擦系数和动摩擦系数最高,其数值分别为0.77和0.68,刨花板摩擦系数最小. Dorn等[83]考察了木质人造板材的摩擦学性能,研究了纤维角度、施加载荷和对偶摩擦副表面粗糙度等因素对摩擦系数的影响,结果发现,施加载荷和对偶摩擦副表面粗糙度对摩擦系数影响显著,纤维角度对摩擦系数影响较小.
3.4 摩擦诱导木质材料摩擦焊技术在木材加工行业中的应用
为解决木质构件连接问题,人们发展了木质材料摩擦焊接技术. 1997年,Suthoff等[84]首次提出木质材料摩擦焊接,随后摩擦诱导木质材料原位焊接逐渐得以发展[85-86]. 木质材料焊接利用摩擦生热将机械能转化为热能,将木质材料表面软化、熔化并冷却固化后连结在一起,形成新的网络结合界面层[87-88],如图8所示. Cornuault等[87]在不同接触压力和水分含量下对山毛榉木样品进行的线性往复摩擦测试,结果发现,摩擦系数很大程度上取决于初始表观接触压力和木质材料含水率,水分存在导致摩擦力降低,研究工作涉及了摩擦学机理研究,并提出摩擦系数可以作为有效工具用于控制和优化木质材料摩擦焊过程. Xu等[89]在胶合板基材中焊接致密化木榫以提高连接件性能,研究发现,木榫直径与预钻孔直径的比例、孔的深度、插入方向和木榫材料等参数会影响抗拉性能,致密化木钉的焊接接头比天然木钉的焊接接头具有更高的抗拉强度.
Yin等[90]研究了旋转摩擦木质材料焊接过程,发现环境中水分含量增加有利于降低木质材料表面的摩擦力和法向压力,纤维角度增加则导致摩擦力和正压力增大,同时导致摩擦界面熔化温度升高. 此外,Yin等[91]在焊接界面使用化学添加剂,探讨了摩擦力、法向力、微观结构和化学成分对焊接界面强度的影响,结果发现,摩擦力对界面强度无明显影响,法向力增大会增强焊接界面强度,葡萄糖和松香作化学添加剂时,增加了焊接界面强度,而桐油、纤维素和愈创木树脂等作为化学添加剂导致焊接界面强度下降. Borisov等[92]讨论了含水率和工艺参数等对木质材料摩擦焊接界面力学特性的影响,结果发现木质材料含水率对焊接接头的连接强度具有显著影响,含水率较高的木质材料粘合强度明显提高.
3.5 木塑复合材料的摩擦磨损性能研究
利用热塑性塑料作为基体材料,用木粉等废弃生物质纤维作为增强相,经过加工处理得到木塑复合材料(Wood-plastic composites)[93-95],木塑复合材料具有优异的尺寸稳定性、耐磨性和力学性能[96]. Shan等[97]利用新型方法制备木塑复合材料并考察其摩擦磨损性能,结果发现,木塑复合材料具有稳定的摩擦系数和较低的磨损率,并且在长时间测试中未发现界面损伤. Zhu等[98]测试了木塑复合材料在硬质合金作为摩擦副条件下的摩擦学性能,讨论了木塑复合材料类型、施加载荷和往复运动频率等对摩擦系数的影响,并建立数学模型用于预测木塑复合材料在加工过程中的摩擦系数变化,结果发现,木塑复合材料类型对摩擦系数影响最大,施加载荷和往复运动频率次之. Tasdemir[99]采用橄榄核和杏仁壳面粉填充聚丙烯制备木塑复合材料,研究了填料含量对木塑复合材料物理性质的影响和施加载荷对摩擦学性能的影响,结果发现,木塑复合材料的密度、软化温度和热转变温度随着填料含量的增加而升高. 施加载荷和滑动距离对磨损率有显著影响,木塑复合材料的磨损率随着施加载荷和滑动距离的增加而逐渐增加. Akpan等[100]利用树脂和短木纤维制备木塑复合材料并考察了其摩擦学性能,结果发现,纤维质量分数为50%的木塑复合材料具有最低磨损率,HAHO120f纤维的磨损率最低,HB400纤维在干摩擦条件下具有最低摩擦系数.
3.6 木质陶瓷材料的制备及摩擦磨损性能研究
将木质材料浸渍在热固性树脂中,在真空或保护气氛下高温烧结,形成的多孔碳材料为木质陶瓷[101-102]. 木质陶瓷的多孔性结构作为摩擦副表面能够储存润滑剂,提升摩擦磨损性能. Akagaki等[103]制备木质陶瓷并研究了其摩擦学性能,发现在油润滑条件下,摩擦系数和磨损率较小,并且与滑动速度无关,但随着施加载荷增大,摩擦系数和磨损率降低,水润滑条件下,滑动速度较大时,摩擦系数和磨损率增大. 潘建梅等[104]研究了干摩擦状态下木质陶瓷的摩擦学性能,发现磨损机理为磨粒磨损和黏着磨损的共同作用,磨损表面形成层状碳膜,具有自润滑作用. Huang等[105]优化了天然杨木的陶瓷化工艺,在保留网络结构和均匀孔隙尺寸条件下,研究了3D-SiC/HCCI木质陶瓷的耐磨性,结果发现,木质陶瓷的耐磨性显著提升,磨损损失从3.8%降低到0.32%.
4. 木质材料功能高端化的前景
Silva等[106]的综述文章中提及软木质材料具有较高摩擦系数,在多个行业领域具有广泛用途,可以作为潜在原材料应用于制药和高端陶瓷等高科技行业,但是,力学性能较差、易燃烧和易变色等特点制约了木质材料高端化应用的范围[107]. 因此,利用化学方法和结构设计改变木质材料的微观结构和化学成分,能够在一定程度上克服传统意义上木质材料力学性能欠佳的缺点,拓展其应用范围[108].
4.1 高强度木质材料的应用研究
天然木质材料应用成本极低且具有循环利用价值,但大多难以满足力学性能(强度和韧性)要求较高的工程应用条件,通常采用物理或化学处理获得密实化木质材料或者复合材料,提高其硬度、耐磨性和断裂模量等. Chen等[109]通过化学处理去除天然椴木中的部分木质素和半纤维素,热压干燥后获得具有致密结构的餐刀,其硬度是标准餐刀的三倍,而且该技术方法制备的木钉与钢钉具有相似性能且不存在因腐蚀生锈的问题. 2018年Song等[110]采用Top-Down方法将天然木质材料转化为超强且坚韧的密实化木质材料,如图9所示,其厚度缩减为原天然木质材料的1/5,强度、韧性和防弹性提高了10倍,具有良好的尺寸稳定性,划痕硬度测试结果表明密实化木质材料的划痕深度显著降低. 多种木质材料经该密实化技术处理,获得比大多数结构金属和合金更高的强度,有望在工程应用中替代某些高性能材料.
4.2 新型能源管理木质复合材料的应用研究
透明木质复合材料具有独特的层次结构、高比强度和良好的光管理性能[111-118],可用于制作光电子器件、太阳能电池光管理层和节能建筑材料. 透明木质材料的制备过程如图10所示,将不同功能材料分散于聚合物中,完成脱木质素和浸渍聚合物过程,得到的透明木材基复合材料[119-123]. 胡良兵团队[121]利用Top-Down方法将各向异性的天然木质材料制作为各向同性的透明纸张,实现了对透明纸张结构和性能调控,为绿色光电器件发展带来潜在机会. 胡良兵团队[123]使用太阳能辅助化学刷洗方法,改变木质素结构制备了透明木质材料,研究发现,获得的透明木质材料(厚度约1 mm)在可见光波段具有高透过率、高雾度和良好导光效果,该方法能够在木质材料表面直接制作多种图案,有望作为节能材料用于建筑工程.
4.3 热管理木质复合材料的应用研究
基于天然的多孔性结构,就热管理角度而言,木质材料的节能属性被关注[124-128]. 胡良兵团队[127]设计制备的脱木素木质复合材料具有较高的强度和极低的热导率,可以作为辐射制冷材料应用于建筑工程领域,Mi等[128]还设计制备了兼具较高强度和韧性的可伸缩美学透明木质材料,具有低热导率特性,有望作为绿色建筑材料用于节能建筑.
4.4 工程结构木质材料的应用研究
水环境下机械装置的运行及其相关的摩擦学问题在近年来引起广泛关注[129-132],袁成清团队[133]比较了典型物理性能对铁梨木等3种典型船舶轴承复合材料摩擦磨损行为的影响,为船舶轴承复合材料的摩擦配副提供相关依据.
5. 木质材料摩擦学研究中存在的问题
近年来,木质材料的摩擦学得到广泛关注,但与具有多年研究历史的木质材料力学研究相比,木质材料摩擦学的研究深度和研究广度依旧存在较大差距,特别是涉及木质材料的磨损行为和机理研究,与摩擦学、力学、高分子科学、化学、物理和表面科学等诸多学科具有极强的相关性.
5.1 木质材料功能高端化发展的需要
新技术进步能够显著提升木质材料的物理和化学性能,意味着较低成本的木质材料有望实现高端功能,持续拓展应用边界. 木质材料的传统加工工艺无法完美跟随木质材料功能高端化趋势,木质材料产业链条中涉及加工技术的环节,需要立足于高端木质产品的加工、使用和维护,从基本工艺条件视角加以调整和优化. 木质材料表面在加工和使用过程中无法避免磨损,因此在优化工艺条件时必须解决摩擦磨损的相关科学问题. 研究木质材料的磨损行为,开发合理的技术方法和工艺手段控制和减少磨损,有利于节约高端木质原料和能源,提升木质材料的价值品位.
5.2 提升木材工业加工标准的需要
作为材料失效的重要形式,磨损的外在表现为互相接触的物体存在相对运动时,接触表面发生交替反复的局部变形和断裂而导致损伤破坏. 磨损具有明显的动态特征,常规力学性能表征难以如实反映材料耐磨性能的优劣. 耐磨性能作为木质材料的重要工艺属性和重要力学性质,未能列入2022年颁布的最新系列国家标准《无疵小试样木质材料物理力学性质试验方法》(GB/T1927.1-2021). 基于摩擦学视角开展木质材料磨损行为和机理的相关研究能够为木质材料加工工艺带来新型技术方法,进而提升行业标准.
5.3 摩擦学领域的专业研究人员参与不足
木质材料摩擦磨损行为具有典型的多学科交叉特点,目前木质材料摩擦学性能的研究,大多聚焦于木质材料摩擦系数与加工工艺条件的参数设置,国内的相关研究工作大多由木材科学与工程领域的研究人员完成,摩擦学领域的研究人员参与较少,因此深入讨论木质材料摩擦磨损行为与机理的研究工作较少. 摩擦学专业领域的研究人员参与木质材料摩擦学性能的研究,有望以摩擦学专业视角讨论木质材料的摩擦磨损行为,推动在木质材料加工工艺过程中磨损机理的泛化研究.
6. 木质材料摩擦学研究展望
近年来,木质材料摩擦学相关研究不断深入,但仍面临新的挑战和机遇. 木质材料摩擦学的研究涉及多个不同尺度下木质材料的结构和性能,多尺度问题源于木质材料本身的复杂分级结构,导致木质材料的许多基本物理性质表现出明显的非线性特征. 针对不同场景下的木质材料摩擦磨损性能的差异,需要从材料结构性能表征和仿真模拟计算等入手,分析木质材料的摩擦学行为. 针对木质材料磨损表面的结构和性能表征可能是木质材料摩擦学未来发展的关键问题,其核心在于理解木质材料的磨损行为并探索磨损机理. 探究木质材料表面的微观结构、物理和化学状态、力学因素以及环境介质等变化引发的木质材料表面的磨损、氧化和腐蚀等导致的木质材料摩擦副表面形态特征和木质材料摩擦磨损行为的变化. 通过试验验证加深对木质材料摩擦磨损行为和机理的理解,丰富木质材料加工工艺技术,为木质材料高端化提供科学理论支持.
随着环境政策持续加码,具有可循环利用属性的木质材料必将对人类社会发展有所贡献. 木质材料加工和使用过程中无法避免的摩擦磨损现象是木质材料突破高端功能应用的障碍之一,因此深入研究木质材料的摩擦磨损行为,对于提升木质材料的加工工艺标准和推动木质材料的功能高端化具有重要意义.
-
表 1 木质材料摩擦焊接过程中界面温度和摩擦系数的变化[45]
Table 1 Variation of interfacial temperature and friction coefficient in wood friction process[45]
Stage Temperature/℃ The variation of the friction coefficients with the temperature during the friction process 1 25~140 In the initial stage, the friction coefficient sharply with the increasing temperature, and then the moisture evaporation from the tribological interfaces lead to the slope of increasing temperature and friction coefficient slows down, the wood surface becomes smooth 2 140~320 The friction coefficient keeps stable, and the temperature of tribological interface ascends linearly 3 320~380 The friction coefficient becomes higher due to the decomposition of cell wall; there are lubrication phenomena between the tribological mates 4 420~440 The achievement of the maximal temperature leads to an equilibrium of temperature as well as the friction force 5 440 The equilibrium of the friction force maintains until termination of the frictional movement 6 440~25 The specimen has been cooled, and this process leads to the completion of the connection -
[1] 程瑞香. 动态热机械分析在木材加工行业的应用[J]. 木材工业, 2005, 19(4): 28–30]. doi: 10.19455/j.mcgy.2005.04.009. Cheng Ruixiang. Applications of dynamic mechanical analysis in wood processing industry[J]. China Wood Industry, 2005, 19(4): 28–30 doi: 10.19455/j.mcgy.2005.04.009
[2] 陆敬严. 中国古代的摩擦学成就[J]. 润滑与密封, 1981, (2): 6–11,5]. Lu Jingyan. Some Achievements of tribology in ancient China[J]. Lubrication Engineering, 1981, (2): 6–11,5
[3] 刘克明, 杨叔子. 先秦车轮制造技术与抗磨损设计[J]. 华中理工大学学报(社会科学版), 1997(1): 116–120]. doi: 10.19648/j.cnki.jhustss1980.1997.01.027. Liu Keming, Yang Shuzi. Prestige wheel manufacturing technology and anti-wear design[J]. Journal of Huazhong University of Science and Technology (Social Science Edition), 1997(1): 116–120 doi: 10.19648/j.cnki.jhustss1980.1997.01.027
[4] Pitenis A A, Dowson D, Gregory Sawyer W. Leonardo da vinci’s friction experiments: an old story acknowledged and repeated[J]. Tribology Letters, 2014, 56(3): 509–515. doi: 10.1007/s11249-014-0428-7.
[5] Bowden F P, Tabor D, Palmer F. The friction and lubrication of solids[J]. American Journal of Physics, 1951, 19(7): 428–429. doi: 10.1119/1.1933017.
[6] 上官蔚蔚, 邢新婷, 费本华, 等. 木材细胞壁力学试验方法研究进展[J]. 西北林学院学报, 2011, 26(6): 149–153]. Shangguan Weiwei, Xing Xinting, Fei Benhua, et al. Advances in the experimental methods of mechanical test of wood cell wall[J]. Journal of Northwest Forestry University, 2011, 26(6): 149–153
[7] 费本华, 余雁, 黄安民, 等. 木材细胞壁力学研究进展[J]. 生命科学, 2010, 22(11): 1173–1176]. doi: 10.13376/j.cbls/2010.11.013. Fei Benhua, Yu Yan, Huang Anmin, et al. Progress in cell wall mechanics of wood[J]. Chinese Bulletin of Life Sciences, 2010, 22(11): 1173–1176 doi: 10.13376/j.cbls/2010.11.013
[8] Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society, Interface, 2012, 9(76): 2749–2766. doi: 10.1098/rsif.2012.0341.
[9] 李大纲. 木材细胞壁细观断裂及其损伤机理[J]. 科学技术与工程, 2004, 4(1): 24–27]. doi: 10.3969/j.issn.1671-1815.2004.01.007. Li Dagang. The mechanism of meso damage and crack of wood cell wall[J]. Science Technology and Engineering, 2004, 4(1): 24–27 doi: 10.3969/j.issn.1671-1815.2004.01.007
[10] 邵卓平, 任海青, 江泽慧. 木材横纹理断裂及强度准则[J]. 林业科学, 2003, 39(1): 119–125]. doi: 10.3321/j.issn:1001-7488.2003.01.020. Shao Zhuoping, Ren Haiqing, Jiang Zehui. Fracture perpendicular to grain of wood and strength criterion[J]. Scientia Silvae Sinicae, 2003, 39(1): 119–125 doi: 10.3321/j.issn:1001-7488.2003.01.020
[11] 林兰英, 秦理哲, 傅峰. 微观力学表征技术的发展及其在木材科学领域中的应用[J]. 林业科学, 2015, 51(2): 121–128]. doi: 10.11707/j.1001-7488.20150215. Lin Lanying, Qin Lizhe, Fu Feng. Development of micromechanical technique and application on wood science[J]. Scientia Silvae Sinicae, 2015, 51(2): 121–128 doi: 10.11707/j.1001-7488.20150215
[12] 尹维, 田煜, 陶大帅, 等. 天然树木和竹子纤维材料的力学性能及仿生研究进展[J]. 科学通报, 2015, 60(31): 2949–2962]. doi: 10.1360/n972014-01318. Yin Wei, Tian Yu, Tao Dashuai, et al. Research progress of mechanical properties of natural wood and bamboo fiber composites and their biomimetics[J]. Chinese Science Bulletin, 2015, 60(31): 2949–2962 doi: 10.1360/n972014-01318
[13] 李伟光, 张占宽. 木材切削过程中摩擦行为的研究进展[J]. 木材工业, 2018, 32(6): 23–27]. doi: 10.19455/j.mcgy.20180606. Li Weiguang, Zhang Zhankuan. Research progress of friction behavior in wood cutting[J]. China Wood Industry, 2018, 32(6): 23–27 doi: 10.19455/j.mcgy.20180606
[14] 成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985]. Cheng Junqing. Wood Science[M]. Beijing: China Forestry Publishing House, 1985
[15] Atack D, Tabor D. The friction of wood[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1958, 246(1247): 539–555. doi: 10.1098/rspa.1958.0163.
[16] McKenzie W M, Karpovich H. The frictional behaviour of wood[J]. Wood Science and Technology, 1968, 2(2): 139–152. doi: 10.1007/BF00394962.
[17] Murase Y. Friction of wood sliding on various materials[J]. Journal of the Faculty of Agriculture, Kyushu University, 1984, 28(4): 147–160. doi: 10.5109/23785.
[18] Guan N, Thunell B, Lyth K. On the friction between steel and some common swedish wood species[J]. Holz als Roh-und Werkstoff, 1983, 41(2): 55–60. doi: 10.1007/bf02612232.
[19] 李伟光, 张占宽. 木材锯切锯齿锯料角对切向力和法向力的影响[J]. 木材工业, 2019, 33(6): 19–23]. doi: 10.19455/j.mcgy.20190605. Li Weiguang, Zhang Zhankuan. Effect of radial clearance angle on tangential force and normal force in wood sawing[J]. China Wood Industry, 2019, 33(6): 19–23 doi: 10.19455/j.mcgy.20190605
[20] Li Weiguang, Zhang Zhankuan. The effect of micro-pits texture on the coefficient of friction between wood and cemented carbide under different wood moisture content[J]. Wood Research, 2019, 64(4): 731–742.
[21] 缑旭东, 冯卓. 松柏类木化石生长轮的定量研究方法与应用[J]. 古生物学报, 2021, 60(2): 299–313]. doi: 10.19800/j.cnki.aps.2020063. Gou Xudong, Feng Zhuo. Quantitative analysis of growth rings and their applications on fossil conifer wood[J]. Acta Palaeontologica Sinica, 2021, 60(2): 299–313 doi: 10.19800/j.cnki.aps.2020063
[22] 胡荣. 木材耐磨性的研究[J]. 林业科学, 1963(2): 167–171]. Hu Rong. Research on the abrasion resistance of wood[J]. Scientia Silvae Sinicae, 1963(2): 167–171
[23] Xu Meijun, Li Li, Wang Mingzhi, et al. Effects of surface roughness and wood grain on the friction coefficient of wooden materials for wood–wood frictional pair[J]. Tribology Transactions, 2014, 57(5): 871–878. doi: 10.1080/10402004.2014.920064.
[24] 许美君, 李黎, 高鑫鑫, 等. 纹理方向对木材与橡胶带间摩擦系数的影响[J]. 木材加工机械, 2012, 23(5): 38–42,15]. doi: 10.13594/j.cnki.mcjgjx.2012.05.010. Xu Meijun, Li Li, Gao Xinxin, et al. Grain direction influencing on the friction coefficient between wood and rubber belts[J]. Wood Processing Machinery, 2012, 23(5): 38–42,15 doi: 10.13594/j.cnki.mcjgjx.2012.05.010
[25] Klamecki B E. Friction mechanisms in wood cutting[J]. Wood Science and Technology, 1976, 10(3): 209–214. doi: 10.1007/BF00355741.
[26] Ohtani T, Iida R, Nakai T, et al. Smoothness of a spruce surface rubbed with a metal tool under high-speed friction[J]. Journal of Wood Science, 2016, 62(4): 377–380. doi: 10.1007/s10086-016-1560-9.
[27] 关耀威, 张宇洋, 段伟, 等. 7075-T651铝合金摩擦磨损性能研究[J]. 材料研究与应用, 2022, 16(6): 1046–1051]. doi: 10.20038/j.cnki.mra.2022.000622. Guan Yaowei, Zhang Yuyang, Duan Wei, et al. Research on the friction-wear properties of 7075-T651 aluminum alloy[J]. Materials Research and Application, 2022, 16(6): 1046–1051 doi: 10.20038/j.cnki.mra.2022.000622
[28] Sangregorio A, Muralidhara A, Guigo N, et al. Humin based resin for wood modification and property improvement[J]. Green Chemistry, 2020, 22(9): 2786–2798. doi: 10.1039/C9GC03620B.
[29] Waßmann O, Ahmed S I U. Slippery wood: low friction and low wear of modified beech wood[J]. Tribology Letters, 2020, 68(2): 53. doi: 10.1007/s11249-020-01297-7.
[30] Pouzet M, Dubois M, Charlet K, et al. Fluorination renders the wood surface hydrophobic without any loss of physical and mechanical properties[J]. Industrial Crops and Products, 2019, 133: 133–141. doi: 10.1016/j.indcrop.2019.02.044.
[31] Nonomura Y, Sano M, Sekine R, et al. Friction dynamics of wood coated with vegetable oil[J]. Journal of Oleo Science, 2021, 70(12): 1777–1782. doi: 10.5650/jos.ess21210.
[32] Friedrich K, Akpan E I, Wetzel B. On the tribological properties of extremely different wood materials[J]. European Journal of Wood and Wood Products, 2021, 79(4): 977–988. doi: 10.1007/s00107-020-01654-2.[LinkOut].
[33] Liu Shutian, Dong Conglin, Yuan Chengqing, et al. Friction reduction behavior of oil-infused natural wood[J]. Friction, 2022, 10(11): 1824–1837. doi: 10.1007/s40544-021-0558-5.
[34] Brischke C, Ziegeler N, Bollmus S. Abrasion resistance of thermally and chemically modified timber[J]. Drvna Industrija, 2019, 70(1): 71–76. doi: 10.5552/drvind.2019.1813.
[35] 彭万喜, 朱同林, 郑真真, 等. 木材抽提物的研究现状与趋势[J]. 林业科技开发, 2004, 18(5): 6–9]. doi: 10.3969/j.issn.1000-8101.2004.05.002. Peng Wanxi, Zhu Tonglin, Zheng Zhenzhen, et al. Research status and trend of wood extracts[J]. China Forestry Science and Technology, 2004, 18(5): 6–9 doi: 10.3969/j.issn.1000-8101.2004.05.002
[36] Smith J. The tribology of rosin[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(8): 1633–1681. doi: 10.1016/s0022-5096(99)00067-8.
[37] McLaren K G, Tabor D. The frictional properties of lignum vitae[J]. British Journal of Applied Physics, 1961, 12(3): 118–120. doi: 10.1088/0508-3443/12/3/308.
[38] Svensson B A, Nyström S, Gradin P A, et al. Frictional testing of wood—initial studies with a new device[J]. Tribology International, 2009, 42(1): 190–196. doi: 10.1016/j.triboint.2008.03.009.
[39] Wu Zumin, Guo Zhiwei, Yuan Chengqing. Insight into the influence of the anatomical properties of wood on the tribological properties[J]. Journal of Cleaner Production, 2022, 330: 129800. doi: 10.1016/j.jclepro.2021.129800.
[40] 屈荣, 胡钰沁, 万翔, 等. 提琴用松香室温摩擦学特性的试验性初探[J]. 摩擦学学报, 2021, 41(2): 251–259]. doi: 10.16078/j.tribology.2020210. Qu Rong, Hu Yuqin, Wan Xiang, et al. Experimental investigation on tribological property of commercially available rosins for violin instrument at room temperature in air[J]. Tribology, 2021, 41(2): 251–259 doi: 10.16078/j.tribology.2020210
[41] 丘湘荣. 木材加工的切削速度对切削现象、切削阻力及摩擦系数的影响[J]. 木工机床, 1986(3): 15–22]. Qiu Xiangrong. Influence of cutting speed in wood processing on cutting phenomenon, cutting resistance and friction coefficient[J]. Woodworking Machinery, 1986(3): 15–22
[42] Dvoracek O, Lechowicz D, Hauser M, et al. Multiparametric cutting force prediction model for various wood species[C]//10th Hardwood Conference, Sopron, 2022: 257–262.
[43] Liu Xinyi, Zuo Haochen, Bai Jingxi, et al. Making fire by drilling different wood materials: a revisit to an old story[J]. Tribology International, 2016, 97: 1–5. doi: 10.1016/j.triboint.2016.01.011.
[44] Iida R, Ohtani T, Nakai T, et al. Changes in wood temperature under high-speed friction[J]. Journal of Wood Science, 2014, 60(5): 313–320. doi: 10.1007/s10086-014-1412-4.
[45] Stamm B, Natterer J, Navi P. Joining wood by friction welding[J]. Holz als Roh-und Werkstoff, 2005, 63(5): 313–320. doi: 10.1007/s00107-005-0007-6.
[46] Li Weiguang, Zhang Zhankuan. Effect of micro-pit texture parameters on characteristics of friction between cemented carbide and wood[J]. Wood Science and Technology, 2019, 53(3): 687–702. doi: 10.1007/s00226-019-01091-2.
[47] Seki M, Tanaka S, Miki T, et al. Friction characteristics between metal tool and wood impregnated with phenol formaldehyde (PF) resin during exposure to high pressure[J]. Journal of Wood Science, 2016, 62(3): 233–241. doi: 10.1007/s10086-016-1551-x.
[48] Kamboj G, Gašparík M, Gaff M, et al. Surface quality and cutting power requirement after edge milling of thermally modified meranti (Shorea spp. ) wood[J]. Journal of Building Engineering, 2020, 29: 101213. doi: 10.1016/j.jobe.2020.101213.
[49] 杨超, 刘小君, 杨海东, 等. 表面织构对刀具切削性能及前刀面摩擦特性的影响[J]. 摩擦学学报, 2015, 35(2): 228–235]. doi: 10.16078/j.tribology.2015.02.015. Yang Chao, Liu Xiaojun, Yang Haidong, et al. Effect of the textured surface on the cutting performance of the tool and the friction property for the rake face[J]. Tribology, 2015, 35(2): 228–235 doi: 10.16078/j.tribology.2015.02.015
[50] Yu Haiyue, Han Zhiwu, Zhang Junqiu, et al. Bionic design of tools in cutting: reducing adhesion, abrasion or friction[J]. Wear, 2021, 482–483: 203955. doi: 10.1016/j.wear.2021.203955.
[51] Zhou Xiaorong, He Lin, Zhou Tao, et al. A comprehensive review of tool surface texturing in the cutting process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(7-8): 2427–2467. doi: 10.1007/s00170-022-10305-0.
[52] 张玉言, 蒋玲, 于波, 等. 干燥环境下表面黏附性能调控研究进展[J]. 摩擦学学报, 2022, 42(2): 446–460]. doi: 10.16078/j.tribology.2020242. Zhang Yuyan, Jiang Ling, Yu Bo, et al. Research progress on surface adhesion regulation under dry environment[J]. Tribology, 2022, 42(2): 446–460 doi: 10.16078/j.tribology.2020242
[53] 李伟光, 张占宽. 微坑型微织构硬质合金表面对木材摩擦特性的影响[J]. 林业科学, 2019, 55(4): 136–143]. doi: 10.11707/j.1001-7488.20190414. Li Weiguang, Zhang Zhankuan. The effect of micro-pits texture on the coefficient of friction between wood and cemented carbide[J]. Scientia Silvae Sinicae, 2019, 55(4): 136–143 doi: 10.11707/j.1001-7488.20190414
[54] Ahuir-Torres J I, Arenas M A, Perrie W, et al. Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys[J]. Optics and Lasers in Engineering, 2018, 103: 100–109. doi: 10.1016/j.optlaseng.2017.12.004.
[55] 李伟光, 许亚东, 冒旭东, 等. 不同织构形式硬质合金表面与木材径切面的摩擦性能[J]. 林业工程学报, 2020, 5(1): 29–33]. doi: 10.13360/j.issn.2096-1359.201903024. Li Weiguang, Xu Yadong, Mao Xudong, et al. Study on friction performance between wood radial section and cemented carbide surface with different micro-textures[J]. Journal of Forestry Engineering, 2020, 5(1): 29–33 doi: 10.13360/j.issn.2096-1359.201903024
[56] 郑光明, 程祥, 杨先海, 等. Al2O3/TiCN涂层刀具的滑动磨损性能及切削性能研究[J]. 摩擦学学报, 2018, 38(3): 356–363]. doi: 10.16078/j.tribology.2018.03.014. Zheng Guangming, Cheng Xiang, Yang Xianhai, et al. Sliding wear performance and cutting performance of the Al2O3/TiCN coated tool[J]. Tribology, 2018, 38(3): 356–363 doi: 10.16078/j.tribology.2018.03.014
[57] Ma Zhen, Lei Yao, Fan Hengzhong, et al. Preparation of tungsten disulfide phosphate coating on textured titanium alloy surface and its tribological properties at elevated temperatures[j]. Tribology, 2023, 43(5): 469–480 (in chinese) [马震, 雷耀, 樊恒中, 等. 织构化钛合金表面二硫化钨磷酸盐涂层的制备及其宽温域摩擦学性能[J]. 摩擦学学报, 2023, 43(5): 469–480]. doi: 10.16078/j.tribology.2022023. Ma Zhen, Lei Yao, Fan Hengzhong, et al. Preparation of tungsten disulfide phosphate coating on textured titanium alloy surface and its tribological properties at elevated temperatures[j]. Tribology, 2023, 43(5): 469–480 (in chinese)
[58] Kazlauskas D, Keturakis G. Wear of TiCN, CrN and DLC coated tungsten carbide router cutters during oak wood milling[C]//20th International Scientific Conference on Mechanika, Kaunas, 2015: 139–142.
[59] 田昌龄, 蔡海潮, 薛玉君, 等. 沉积功率对Ce-Ti/MoS2复合涂层摩擦磨损性能的影响[J]. 表面技术, 2023, 52(8): 197–207]. doi: 10.16490/j.cnki.issn.1001-3660.2023.08.014. Tian Changling, Cai Haichao, Xue Yujun, et al. Effect of deposition power on friction and wear properties of Ce-Ti/MoS2 composite coating[J]. Surface Technology, 2023, 52(8): 197–207 doi: 10.16490/j.cnki.issn.1001-3660.2023.08.014
[60] Wu Zhiwei, Wang Yan, Li Sihao, et al. Mechanical and tribological properties of B-C-N coatings sliding against different wood balls[J]. Science and Engineering of Composite Materials, 2019, 26(1): 402–411. doi: 10.1515/secm-2019-0023.
[61] 张国庆. TiAlN涂层刀具高速铣削镍基高温合金过程中刀具损伤及刀具寿命研究[D]. 济南: 齐鲁工业大学, 2023]. Zhang Guoqing. Research on tool damage and tool life during high speed milling of nickel base superalloy with TiAlN coated tools[D]. Jinan: Qilu University of Technology, 2023
[62] Nadolny K, Kapłonek W, Sutowska M, et al. Experimental studies on durability of PVD-based CrCN/CrN-coated cutting blade of planer knives used in the pine wood planing process[J]. Materials, 2020, 13(10): 2398. doi: 10.3390/ma13102398.
[63] Sommer F, Talpeanu D, Kern F, et al. Medium density fiberboard machining and wear behavior of injection-molded ceramic composite wood cutting tools[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 147–156. doi: 10.1111/ijac.12144.
[64] 马震, 曹文辉, 樊恒中, 等. 钛合金表面自润滑复合耐磨结构的制备及其摩擦性能研究[J]. 摩擦学学报, 2022, 42(6): 1184–1195]. doi: 10.16078/j.tribology.2021234. Ma Zhen, Cao Wenhui, Fan Hengzhong, et al. Preparation and tribological properties of self-lubricating composite wear-resistant structure on titanium alloy surface[J]. Tribology, 2022, 42(6): 1184–1195 doi: 10.16078/j.tribology.2021234
[65] Cheng Ming, Liu Wensheng, Yao Shuwei, et al. Kinetics and mechanisms for the densification and grain growth of the α-alumina fibers isothermally sintered at elevated temperatures[J]. Ceramics International, 2022, 48(15): 21756–21762. doi: 10.1016/j.ceramint.2022.04.158.
[66] Guo X L, Wang J X, Buck D, et al. Cutting forces and cutting quality in the up-milling of solid wood using ceramic cutting tools[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(5): 1575–1584. doi: 10.1007/s00170-021-06991-x.
[67] Guo X L, Zhu Z L, Ekevad M, et al. The cutting performance of Al2O3 and Si3N4 ceramic cutting tools in the milling plywood[J]. Advances in Applied Ceramics, 2018, 117(1): 16–22. doi: 10.1080/17436753.2017.1368946.
[68] 周慧慧, 张执南. 基于特征迁移的面铣刀磨损监测方法[J]. 摩擦学学报, 2022, 42(6): 1267–1277]. doi: 10.16078/j.tribology.2021158. Zhou Huihui, Zhang Zhinan. Feature transfer-based approach for tool wear monitoring of face milling[J]. Tribology, 2022, 42(6): 1267–1277 doi: 10.16078/j.tribology.2021158
[69] Dorn M, de Borst K, Eberhardsteiner J. Experiments on dowel-type timber connections[J]. Engineering Structures, 2013, 47: 67–80. doi: 10.1016/j.engstruct.2012.09.010.
[70] Foust B E, Lesniak J R, Rowlands R E. Stress analysis of a pinned wood joint by grey-field photoelasticity[J]. Composites Part B: Engineering, 2014, 61: 291–299. doi: 10.1016/j.compositesb.2014.01.041.
[71] Xie Qifang, Zhang Lipeng, Li Shuang, et al. Cyclic behavior of Chinese ancient wooden frame with mortise–tenon joints: friction constitutive model and finite element modelling[J]. Journal of Wood Science, 2018, 64(1): 40–51. doi: 10.1007/s10086-017-1669-5.
[72] 孟庆军. 木质材料间摩擦性能及其对木结构设计的影响研究[D]. 哈尔滨: 东北林业大学, 2010]. Meng Qingjun. The study for frictional properties of wooden materials and the impact on wood structure design[D]. Harbin: Northeast Forestry University, 2010
[73] 高永林. 基于木材摩擦机理和嵌压特性的传统木结构典型榫卯节点试验研究及理论分析[D]. 昆明: 昆明理工大学, 2017]. Gao Yonglin. Experimental study and theoretical analysis of traditional timber typical mortise-tenon joints based on the wood friction mechanism and embedded pressure characteristics[D]. Kunming: Kunming University of Science and Technology, 2017
[74] 胡文刚, 关惠元. 基于摩擦特性的榫接合节点抗拔力研究[J]. 林业工程学报, 2017, 2(4): 158–162]. doi: 10.13360/j.issn.2096-1359.2017.04.025. Hu Wengang, Guan Huiyuan. Investigation on withdrawl force of mortise and tenon joint based on friction properties[J]. Journal of Forestry Engineering, 2017, 2(4): 158–162 doi: 10.13360/j.issn.2096-1359.2017.04.025
[75] Hu Wengang, Guan Huiyuan. A finite element model of semi-rigid mortise-and-tenon joint considering glue line and friction coefficient[J]. Journal of Wood Science, 2019, 65(1): 14. doi: 10.1186/s10086-019-1794-4.
[76] Fu Weilian, Guan Huiyuan, Chen Bingrui. Investigation on the influence of moisture content and wood section on the frictional properties of beech wood surface[J]. Tribology Transactions, 2021, 64(5): 830–840. doi: 10.1080/10402004.2021.1926029.
[77] 陈豪杰, 李黎, 王宏棣. 体育地板滑动摩擦系数研究[J]. 木材加工机械, 2007, 18(4): 25–28]. doi: 10.3969/j.issn.1001-036X.2007.04.008. Chen Haojie, Li Li, Wang Hongdi. Preliminary research on sliding properties of the wooden floor for gymnasium[J]. Wood Processing Machinery, 2007, 18(4): 25–28 doi: 10.3969/j.issn.1001-036X.2007.04.008
[78] 刘振东, 王文波, 蔡雷, 等. 常用实木地板的摩擦磨损性能研究[J]. 摩擦学学报, 2012, 32(6): 557–562]. doi: 10.16078/j.tribology.2012.06.009. Liu Zhendong, Wang Wenbo, Cai Lei, et al. Friction and wear properties of commercial solid wood floorings[J]. Tribology, 2012, 32(6): 557–562 doi: 10.16078/j.tribology.2012.06.009
[79] Ren Yi, Yang Yang, Zhang Jijuan, et al. Innovative conversion of PretreatedBuxus sinicainto high-performance biocomposites for potential use as furniture material[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 47176–47187. doi: 10.1021/acsami.2c15649.
[80] 胡广斌. 2022年我国人造板装备概况及发展趋势[J]. 中国人造板, 2023, 30(7): 1–4]. doi: 10.12393/j.1673-5064.20230701. Hu Guangbin. Analysis on development situation and prospect of China’s wood-based panels equipment[J]. China Wood-Based Panels, 2023, 30(7): 1–4 doi: 10.12393/j.1673-5064.20230701
[81] 朱春玲. 木质人造板材燃烧性能的分析研究[J]. 工程质量, 2022, 40(11): 18–23]. doi: 10.3969/j.issn.1671-3702.2022.11.005. Zhu Chunling. Analysis and study on combustion performance of artificial wood panel[J]. Construction Quality, 2022, 40(11): 18–23 doi: 10.3969/j.issn.1671-3702.2022.11.005
[82] Kukla M, Warguła Ł, Biszczanik A. Determining the coefficient of friction of wood-based materals for furniture panels in the aspect of modelling their shredding process[J]. Wood Research, 2021, 66(5): 789–805. doi: 10.37763/wr.1336-4561/66.5.789805.
[83] Dorn M, Habrová K, Koubek R, et al. Determination of coefficients of friction for laminated veneer lumber on steel under high pressure loads[J]. Friction, 2021, 9(2): 367–379. doi: 10.1007/s40544-020-0377-0.
[84] Suthoff B, Kutzer HJ (1997) Offenlegungsschrift DE 197 46 782 A 1. Deutsches Patent und Markenamt
[85] 张剑, 宓文涛, 朱海. 木材摩擦焊接技术的探究与进展[J]. 中国胶粘剂, 2023, 32(8): 60–68]. doi: 10.13416/j.ca.2023.08.010. Zhang Jian, Mi Wentao, Zhu Hai. Research and progress of wood friction welding technology[J]. China Adhesives, 2023, 32(8): 60–68 doi: 10.13416/j.ca.2023.08.010
[86] El-Houjeyri I, Thi V D, Oudjene M, et al. Experimental investigations on adhesive free laminated oak timber beams and timber-to-timber joints assembled using thermo-mechanically compressed wood dowels[J]. Construction and Building Materials, 2019, 222: 288–299. doi: 10.1016/j.conbuildmat.2019.05.163.
[87] Cornuault P, Carpentier L. Tribological mechanisms involved in friction wood welding[J]. Tribology International, 2020, 141: 105963. doi: 10.1016/j.triboint.2019.105963.
[88] Zhu Xudong, Xue Yingying, Zhang Sujun, et al. Mechanics and crystallinity/thermogravimetric investigation into the influence of the welding time and CuCl2 on wood dowel welding[J]. BioResources, 2018, 13(1): 1329–1347. doi: 10.15376/biores.13.1.1329-1347.
[89] Xu Bohan, Liu Ke, Zhao Yanhua, et al. Pullout resistance of densified wood dowel welded by rotation friction[J]. Journal of Materials in Civil Engineering, 2022, 34(8): 04022186. doi: 10.1061/(asce)mt.1943-5533.0004343.
[90] Yin Wei, Lu Hongyu, Zheng Yelong, et al. Tribological properties of the rotary friction welding of wood[J]. Tribology International, 2022, 167: 107396. doi: 10.1016/j.triboint.2021.107396.
[91] Yin Wei, Zheng Yelong, Lu Hongyu, et al. Tribological and mechanical properties of wood dowel rotation welding with different additives[J]. Journal of Adhesion Science and Technology, 2023, 37(3): 411–425. doi: 10.1080/01694243.2021.2021682.
[92] Borisov M, Mijic N, Ili Z, et al. Advanced Technologies, Systems, and Applications III[M]. Cham: Springer International Publishing, 2018.
[93] 高黎, 王正. 木塑复合材料的研究、发展及展望[J]. 人造板通讯, 2005, 12(2): 5–8,17]. Gao Li, Wang Zheng. Present status and future of wood-plastics composites[J]. China Wood-based Panels, 2005, 12(2): 5–8,17
[94] Ma Yuanbin, He Hui, Huang Bai, et al. In situ fabrication of wood flour/nano silica hybrid and its application in polypropylene-based wood-plastic composites[J]. Polymer Composites, 2020, 41(2): 573–584. doi: 10.1002/pc.25389.
[95] Abd El-Fattah A, Abd ElKader E. Influence of different clays on the mechanical, thermal, and water absorption properties of recycled high-density polyethylene/wood flour hybrid composites[J]. Journal of Composite Materials, 2018, 52(9): 1215–1226. doi: 10.1177/0021998317723180.
[96] Bhaskar K, Jayabalakrishnan D, Vinoth Kumar M, et al. Analysis on mechanical properties of wood plastic composite[J]. Materials Today: Proceedings, 2021, 45: 5886–5891. doi: 10.1016/j.matpr.2020.08.570.
[97] Shan Zhiqiang, Jia Xiaohua, Qiu Yong, et al. Improved wear resistance and recycling of carbon fiber/epoxy composites via incorporation of regenerated lignin cellulose[J]. Materials Chemistry and Physics, 2023, 303: 127804. doi: 10.1016/j.matchemphys.2023.127804.
[98] Zhu Z L, Buck D, Wu Z W, et al. Frictional behaviour of wood-Plastic composites against cemented carbide during sliding contact[J]. Wood Material Science & Engineering, 2023, 18(3): 1127–1133. doi: 10.1080/17480272.2022.2119432.
[99] Tasdemir M. Polypropylene/olive pit & almond shell polymer composites: wear and friction[C]//5th International Conference on Nanomaterials and Materials Engineering (ICNME), Bali, Indonesia, 2017, 204: 012015. doi: 10.1088/1757-899x/204/1/012015.
[100] Akpan E I, Wetzel B, Friedrich K. A fully biobased tribology material based on acrylic resin and short wood fibres[J]. Tribology International, 2018, 120: 381–390. doi: 10.1016/j.triboint.2018.01.010.
[101] Okabe T, Saito K, Hokkirigawa K. New porous carbon materials, Woodceramics: development and fundamental properties[J]. Journal of Porous Materials, 1996, 2(3): 207–213. doi: 10.1007/BF00488110.
[102] 孙德林, 计晓琴, 王张恒, 等. 木陶瓷的研究进展及发展趋势[J]. 林业工程学报, 2020, 5(1): 1–10]. doi: 10.13360/j.issn.2096-1359.201906016. Sun Delin, Ji Xiaoqin, Wang Zhangheng, et al. Research progress and development trends of woodceramics[J]. Journal of Forestry Engineering, 2020, 5(1): 1–10 doi: 10.13360/j.issn.2096-1359.201906016
[103] Akagaki T, Hokkirigawa K, Okabe T, et al. Friction and wear of woodceramics under oil and water lubricated sliding contacts[J]. Journal of Porous Materials, 1999, 6(3): 197–204. doi: 10.1023/A:1009675828763.
[104] 潘建梅, 严学华, 程晓农, 等. 生物形态木质陶瓷的摩擦学性能研究[J]. 摩擦学学报, 2011, 31(6): 575–580]. doi: 10.16078/j.tribology.2011.06.011. Pan Jianmei, Yan Xuehua, Cheng Xiaonong, et al. Tribological properties of biomorphic woodceramics[J]. Tribology, 2011, 31(6): 575–580 doi: 10.16078/j.tribology.2011.06.011
[105] Huang Tianxing, Li Zhuan, Huang Yanqi, et al. Microstructure and wear properties of SiC woodceramics reinforced high-chromium cast iron[J]. Ceramics International, 2020, 46(3): 2592–2601. doi: 10.1016/j.ceramint.2019.08.217.
[106] Silva S P, Sabino M A, Fernandes E M, et al. Cork: properties, capabilities and applications[J]. International Materials Reviews, 2005, 50(6): 345–365. doi: 10.1179/174328005x41168.
[107] Ansell M P. Wood: a 45th anniversary review of JMS papers[J]. Journal of Materials Science, 2012, 47(2): 583–598. doi: 10.1007/s10853-011-5995-5.
[108] Jiang Feng, Li Tian, Li Yiju, et al. Wood-based nanotechnologies toward sustainability[J]. Advanced Materials, 2018, 30(1): 1703453. doi: 10.1002/adma.201703453.
[109] Chen B, Leiste U H, Fourney W L, et al. Hardened wood as a renewable alternative to steel and plastic[J]. Matter, 2021, 4(12): 3941–3952. doi: 10.1016/j.matt.2021.09.020.
[110] Song Jianwei, Chen Chaoji, Zhu Shuze, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554: 224–228. doi: 10.1038/nature25476.
[111] Chen Chaoji, Kuang Yudi, Zhu Shuze, et al. Structure–property–function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5: 642–666. doi: 10.1038/s41578-020-0195-z.
[112] Mao Y M, Hu L B, Ren Z J. Engineered wood for a sustainable future[J]. Matter, 2022, 5(5): 1326–1329. doi: 10.1016/j.matt.2022.04.013.
[113] Sun Jianguo, Guo Hengyu, Ribera J, et al. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications[J]. ACS Nano, 2020, 14(11): 14665–14674. doi: 10.1021/acsnano.0c05493.
[114] Wang Feng, Cheong J Y, He Qiu, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal, 2021, 414: 128767. doi: 10.1016/j.cej.2021.128767.
[115] Guan Hao, Meng Junwang, Cheng Zhiyong, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46357–46365. doi: 10.1021/acsami.0c12561.
[116] Chen Yuwei, Liu Yuhong, Xia Yumin, et al. Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite films with enhanced dielectric permittivity and anisotropic light transmission[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24242–24249. doi: 10.1021/acsami.0c03086.
[117] Rai R, Ranjan R, Dhar P. Life cycle assessment of transparent wood production using emerging technologies and strategic scale-up framework[J]. Science of the Total Environment, 2022, 846: 157301. doi: 10.1016/j.scitotenv.2022.157301.
[118] Liu Lin, Zhu Guiying, Chen Yujie, et al. Switchable photochromic transparent wood as smart packaging materials[J]. Industrial Crops and Products, 2022, 184: 115050. doi: 10.1016/j.indcrop.2022.115050.
[119] Kumar A, Jyske T, Petrič M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review[J]. Advanced Sustainable Systems, 2021, 5(5): 2000251. doi: 10.1002/adsu.202000251.
[120] Zhu Sailing, Kumar Biswas S, Qiu Zhe, et al. Transparent wood-based functional materials via a top-down approach[J]. Progress in Materials Science, 2023, 132: 101025. doi: 10.1016/j.pmatsci.2022.101025.
[121] Zhu Mingwei, Jia Chao, Wang Yilin, et al. Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28566–28571. doi: 10.1021/acsami.8b08055.
[122] Qiu Zhe, Xiao Zefang, Gao Likun, et al. Transparent wood bearing a shielding effect to infrared heat and ultraviolet via incorporation of modified antimony-doped tin oxide nanoparticles[J]. Composites Science and Technology, 2019, 172: 43–48. doi: 10.1016/j.compscitech.2019.01.005.
[123] Xia Qinqin, Chen Chaoji, Li Tian, et al. Solar-assisted fabrication of large-scale, patternable transparent wood[J]. Science Advances, 2021, 7(5): eabd7342. doi: 10.1126/sciadv.abd7342.
[124] Siciliano A P, Zhao X P, Fedderwitz R, et al. Sustainable wood-waste-based thermal insulation foam for building energy efficiency[J]. Buildings, 2023, 13(4): 840. doi: 10.3390/buildings13040840.
[125] Li Tian, Song Jianwei, Zhao Xinpeng, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose[J]. Science Advances, 2018, 4(3): eaar3724. doi: 10.1126/sciadv.aar3724.
[126] Zhao Xinpeng, Liu Yu, Zhao Liuxian, et al. A scalable high-porosity wood for sound absorption and thermal insulation[J]. Nature Sustainability, 2023, 6(3): 306–315. doi: 10.1038/s41893-022-01035-y.
[127] Li Tian, Zhai Yao, He Shuaiming, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760–763. doi: 10.1126/science.aau9101.
[128] Mi R Y, Chen C J, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings[J]. Nature Communications, 2020, 11: 3836. doi: 10.1038/s41467-020-17513-w.
[129] Dong Conglin, Shi Lichun, Li Lvzhou, et al. Stick-slip behaviours of water lubrication polymer materials under low speed conditions[J]. Tribology International, 2017, 106: 55–61. doi: 10.1016/j.triboint.2016.10.027.
[130] Qin Hongling, Zhou Xincong, Zhao Xinze, et al. A new rubber/UHMWPE alloy for water-lubricated stern bearings[J]. Wear, 2015, 328–329: 257–261. doi: 10.1016/j.wear.2015.02.016.
[131] 周新聪, 钟达, 黄健, 等. ATP改性UHMWPE水润滑轴承材料的摩擦学特性研究[J]. 摩擦学学报, 2022, 42(3): 632–641]. doi: 10.16078/j.tribology.2021049. Zhou Xincong, Zhong Da, Huang Jian, et al. Tribological properties of ATP-modified UHMWPE water-lubricated bearing materials[J]. Tribology, 2022, 42(3): 632–641 doi: 10.16078/j.tribology.2021049
[132] 季浩, 禹涛, 张晓寒, 等. 微量第二介质辅助水润滑的临界转速的研究[J]. 摩擦学学报, 2023, 43(3): 274–282]. doi: 10.16078/j.tribology.2021269. Ji Hao, Yu Tao, Zhang Xiaohan, et al. Critical speed of assisted water lubrication with small quantity secondary lubricant[J]. Tribology, 2023, 43(3): 274–282 doi: 10.16078/j.tribology.2021269
[133] 刘书天, 董从林, 袁成清, 等. 三种典型船舶轴承复合材料的物理性能对摩擦学行为的影响研究[J]. 摩擦学学报, 2018, 38(5): 528–536]. doi: 10.16078/j.tribology.2018.05.005. Liu Shutian, Dong Conglin, Yuan Chengqing, et al. Effect of physical properties of three typical ship bearing composite materials on tribological properties[J]. Tribology, 2018, 38(5): 528–536 doi: 10.16078/j.tribology.2018.05.005