-
摘要:
机器零部件的磨损是机器失效故障的主要原因,由磨损引发机械故障带来巨大经济损失,有必要开展机械设备的磨损检测. 磨粒检测技术通过磨粒的形状与图像分析,可以认知磨损的机理与磨损过程,实现视情维修,并且实现对机械零部件剩余寿命的预测. 本文中拟从磨粒的检测原理与方法、统计分析、几何分析、图像分割、图像识别与处理、在线铁谱技术与磨粒智能分析,对机械磨损的磨粒检测技术进展进行评述. 铁谱仪的原理有直读式铁谱仪、分析式铁谱仪、旋转式铁谱仪和在线铁谱仪. 基于磨粒的检测原理有铁谱技术、基于霍尔效应的磨粒检测、激光网检测、微流控检测技术、径向磁感应的磨粒检测、静电检测磨粒的方法、超声波反射检测磨粒的方法和并行共振激励检测等. 本文中介绍了铁谱技术的统计分析、几何形态分析、分形分析、图像分割研究、基于图像的铁谱分析、在线铁谱分析和铁谱的人工智能分析进展;另一方面,提出了机械磨损的磨粒检测技术存在的问题与挑战,提出了今后需要研究的问题. 基于机器视觉,自动分析磨粒的大小、边缘形状和表面纹理,得到磨粒的特征参数,用群理论分析磨粒的统计参数,减少对试验分析人员经验的依赖,实现更快、更准确的磨粒特征分析. 基于分形几何理论表征磨粒的几何形态,得到磨粒的尺度不变量. 逆分形分析技术是从小尺度到大尺度,可以对磨粒的几何形态提供新的表征信息. 采用三维磨粒的全信息检测技术,可以提取磨粒的三维几何特征. 针对磨粒几何形态的分形计算,引入粗糙集理论,来提高磨粒图像分割的精度与速度. 新的磨粒产生速率是衡量磨损变化趋势的有效参数,可以预测机械零件的剩余寿命. 两种或者多种检测原理的融合与集成,可以提高监测磨损的准确性,为机器的磨损故障预测提供更高的可信性. 此外,集成不同研究者各自开发的磨粒智能检测分析方法,研制机器磨损故障监测的软件包,实现基于磨粒信息的机械磨损的故障诊断与机械零件剩余磨损寿命的预测.
Abstract:The wear of mechanical parts and elements is the main reason of the failures of machines, and causes enormous economic loss as results of failures of mechanical wear. Thus, the operation conditions of equipment are monitored with respect to wear process and wear state. The wear mechanisms and the wear stages can be studied with the detection techniques in terms of wear debris, and the maintenance based on machine condition and the prediction of the remain service life of mechanical elements and parts can be achieved. The principles of wear debris detection, statistical analysis, morphological analysis, image segmentation and recognition and intelligent examine based on artificial intelligence were reviewed. The ferrography methods have direct reading ferrography, analytical ferrography, rotary ferrography and on-line ferrography. The principles of debris detection are classified as ferrography, Hall-effect, laser net fins, microfluidic detection, radial inductive sensor, electrostatic sensor, ultrasonic echo detection and detection method with parallel resonance structure. The state and the art of measurements using wear debris of above different principles were comparatively reviewed. On the other hand, the challenges and existed problems, which need studied further, of wear debris for detection of mechanical wear are proposed and presented. The automatic analysis of debris size, edge profile and surface texture based on machine vision would obtain its feature parameters. The statistical computation with group theory can avoid the dependence on experience of researchers, and achieve more efficient and accuracy analysis of debris features. The characterization of debris morphology with fractal theory can obtain their scale-invariant parameters, and the inverse fractal analysis from small scale to larger scale can provide new information for the debris morphology. The morphological feature extraction based on three dimensional view images for wear debris analysis can present full description of the wear debris. The introduction of the rough set theory to the fractal analysis debris morphology can improve the efficiency and accuracy of the segmentation of wear debris. The birth rate of new wear debris is an effective parameter to assess the wear stage and its tendency, with which remain service lives of mechanical elements can be predicted. The integration of different principal methods can improve the accuracy of wear monitoring, and provide more reliable prediction results for the wear failure of machines. Moreover, an exited problem and useful topic is the integration of the intelligent analysis methods presented by different researchers, and develop one software for the monitoring of wear failure of machines, which is a trend of monitoring method of mechanical wear. The final goals are the automatic failure diagnosis of mechanical wear based on the information of wear debris, and the prediction of remain service life of mechanical elements as results of mechanical wear.
-
我国盾构机整机研制能力已达到世界先进水平,但是影响盾构机整机可靠性和安全性的主驱动密封关键核心零部件几乎全部依赖进口,核心技术被欧美国家垄断,加之受愈演愈烈俄乌战争局势和复杂多变国际形势影响,加剧了对国内盾构机企业关键核心零部件的封锁制裁[1-4]. 受制于关键零部件“卡脖子”问题,我国高端盾构机技术水平与国外仍存在较大差距,特别是国内缺乏高性能的主驱动橡胶密封件,表现在国产密封材料加工性能差,压变性和耐磨性不足,导致盾构机主驱动橡胶密封件长期依赖进口材料,严重制约了我国盾构机产业的高质量发展,危及盾构机产业安全[5-10].
大型盾构机主驱动橡胶密封件直径可达7 m以上,其截面是1种VD型异形密封结构,橡胶材料的加工性能在其精细结构成型过程中发挥着举足轻重的作用,而焦烧时间和门尼黏度是影响橡胶材料加工性能的关键因素[11]. 焦烧时间越短,加工过程中越容易发生橡胶早期硫化现象,导致密封件唇口精细结构处出现缺陷;门尼黏度反映橡胶加工性能的好坏和分子量高低及分布范围宽窄,黏度值高,表明橡胶分子量大,可塑性差. 在大型盾构机用异形密封圈的成型过程中,通常要求密封材料门尼黏度ML(1+4)<50,焦烧时间T10>150 s.
针对大型盾构机主驱动橡胶密封的成型工艺对丁腈橡胶加工性能的要求,本研究中以松明油、癸二酸二丁酯和固体古马隆树脂为原料,合成复合增塑剂;并使用高结构炭黑(每100 g炭黑的邻苯二甲酸二丁酯吸收值不低于110 mL)和低结构炭黑(每100 g炭黑的邻苯二甲酸二丁酯吸收值不高于70 mL)并用的补强体系,对NBR密封材料进行加工性能、物理机械性能和摩擦性能的宏观调控,结果表明改性后的NBR在兼具良好力学性能和耐磨性能的同时,加工性能得到显著改善,研制的NBR混炼胶焦烧时间T10可长达168.6 s,门尼黏度值ML(1+4)可低至46.95,满足了大型盾构机主驱动橡胶密封的成型工艺需求,可以推动国内盾构机主驱动密封用NBR复合材料的发展.
1. 试验部分
1.1 原料
丁腈橡胶N21购买于中国石油兰州石化公司;炭黑N220购买于江西黑猫炭黑股份有限公司;槽法炭黑购买于山东德蓝化工有限公司;过氧化二异丙苯(DCP)购买于上海凯茵化工有限公司;古马隆树脂购买于濮阳市恒泰石油化工有限公司;松明油(Pine Tar)购买于衡水帝亿石油化工有限公司;氧化锌、硬脂酸、2-硫醇基苯骈咪唑、2,2,4-三甲基-1,2-二氢化喹啉、癸二酸二丁酯、四甲基秋兰姆二硫化物、硫磺和N,N'-间苯撑双马来酰亚胺均购买于阿拉丁生化科技股份有限公司.
1.2 材料组成
基本组成:NBR (兰化 N21)100份,氧化锌5份,硬脂酸1份,炭黑N220 45份,槽法炭黑15份,2-硫醇基苯骈咪唑2.5份,2,2,4-三甲基-1,2-二氢化喹啉1份,古马隆树脂5份,癸二酸二丁酯2份,四甲基秋兰姆二硫化物1.5份,硫磺1份,过氧化二异丙苯2.5份,N,N'-间苯撑双马来酰亚胺1份. 改变松明油加入量,不同松明油(Pine ar)含量的橡胶材料样品编号列于表1中.
表 1 不同松明油使用量的丁腈橡胶配方设计Table 1. Formulation design of NBR with different amount of pine tarSample Content of pine tar/phr (weight parts per hundred parts of rubber) 1# 0.0 2# 0.3 3# 0.6 4# 0.9 5# 1.2 1.3 NBR硫化胶的制备
首先将烧杯放置在加热炉上,预热至50~80 ℃;加入固体古马隆树脂,升温至100 ℃使其熔化,然后再加入松明油和癸二酸二丁酯,搅拌直至三组份分散均匀;将加热炉缓慢升温到120 ℃,搅拌10~20 min后停止搅拌,将混合液体放置在室温下自然冷却至室温,得到粒状三组份复合增塑剂.
将密炼机预热至40 ℃后投入NBR生胶进行塑炼至生胶包辊,然后向密炼机依次投入三组份复合增塑剂、氧化锌、硬脂酸、炭黑N220、槽法炭黑、2-硫醇基苯骈咪唑和2,2,4-三甲基-1,2-二氢化喹啉,混炼20 min,将所述混炼后的橡胶从密炼机中取出,在室温条件下静置24 h,得到丁腈橡胶混炼胶. 将得到的混炼橡胶置于开炼机中,依次加入硫磺、四甲基秋兰姆二硫化物、过氧化二异丙苯和N,N’-间苯撑双马来酰亚胺,经打三角包3次和打卷3 次后出片,橡胶片在室温条件下静置24 h,得到混炼胶压延片. 将混炼胶压延片置入相应的模具,放入平板硫化机,在160 ℃和8 MPa条件下硫化,硫化时间为20 min,得到NBR硫化胶.
1.4 性能测试
硫化参数测试按照GB/T 1233-2008,采用橡胶加工分析仪(RPA, RPA 2000型, 美国 Alpha 科技有限公司)进行测定,设置测试压力为 10 MPa,角度为±0.5°.
门尼黏度按照 GB/T1232.1-2000,采用门尼黏度仪(MV, MV 2000型, 美国Alpha科技有限公司)进行测定,设置其测试时间为4 min,预热时间为1 min,温度为100 ℃.
硬度按照GB/T 531. 1-2008,采用邵氏A型硬度计进行测试,样品的尺寸为50 mm×50 mm×6 mm.
拉伸性能按照GB/T 528-2009中的1型试样,采用万能电子拉伸试验机(Shimadzu,AD-X,5 kN)进行测试,拉伸速率为500 mm/min.
压缩永久变形按照 GB/T 7759.1-2015中的方法进行测定,设置温度为100 ℃,保温时间为24 h.
耐磨性能即阿克隆磨耗按照GB/T 1689-2014,采用高温阿克隆磨耗试验机(GT-7012-AH1)进行测试.
摩擦系数按照GB/T 12444-2006,采用高速环块摩擦磨损试验机(MR-H3B型)进行测试,测试条件为载荷132 N,转速70 r/min,样品尺寸为12.32 mm×12.32 mm×19.05 mm,金属对偶为Φ 49.22 mm×13.06 mm尺寸及304不锈钢材质.
2. 结果与讨论
2.1 硫化参数和门尼黏度
采用橡胶加工分析仪(RPA 2000)以及门尼黏度仪(MV 2000)测试了NBR混炼胶的硫化参数和门尼黏度,如图1所示. NBR混炼胶硫化参数的测试结果列于表2中,由表2可看出,当NBR复合增塑剂中的松明油使用量少于0.9 phr时,NBR的焦烧时间T10和门尼黏度ML(1+4)呈现出显著的线性相关性,其中当松明油使用量由0 phr增加到0.9 phr时,T10由130.2 s增加到168.6 s,ML(1+4)由85.55降低到46.95. 图2所示为不同硫化参数的混炼胶加工成盾构机主驱动用VD密封圈唇口图片,由图2可以看出,1#NBR密封件唇口处有明显缺陷,而4#NBR密封件唇口处平整饱满,4#相比于1#,由于焦烧时间的延长和门尼黏度的降低,加工性能得到显著提升,能够满足主驱动VD型橡胶密封件唇口处精细结构的完整成型对橡胶材料加工性能的要求. 这主要是因为,在本研究中合成的三组份复合增塑剂中癸二酸二丁酯对古马隆树脂主体能够发挥溶胀作用,可以增加古马隆树脂中分子的自由体积,增强其分子链段的运动能力,提高橡胶加工时的柔韧性;同时黏稠的松明油中吸附的萜烃类物质可作为再生剂,其间的活性小分子能均匀渗透到古马隆树脂分子中间,使其溶胀,增加分子间的距离及氧的渗透,反应作用机理如图3所示,因此,三组份复合增塑剂在橡胶体系中的分散性和溶解性较高,制备的橡胶密封材料具有较长的焦烧时间和较低的门尼黏度.
图 1 丁腈橡胶的硫化参数和门尼黏度:(a)丁腈橡胶的硫化曲线;(b)丁腈橡胶的门尼黏度;(c)松明油使用量对T10和ML(1+4)的影响;(d)松明油使用量对T90和(MH-ML)的影响Figure 1. Curing parameters and Mooney viscosity of NBR: (a) vulcanization curve of NBR; (b) Mooney viscosity curve of NBR; (c) effect of pine tar additive on T10 and ML(1+4); (d) effect of pine tar additive on T90 and(MH-ML)表 2 不同松明油使用量丁腈橡胶的硫化参数Table 2. Curing parameters of NBR with different pine tar contentSample T10/s T90/s MH/(dN·m) ML/(dN·m) MH-ML/(dN·m) ML(1+4) 1# 130.2 1 366.8 25.43 2.59 22.84 85.55 2# 142.2 1 202.4 23.95 2.18 21.77 75.18 3# 155.4 1 206.6 23.89 1.85 22.04 59.53 4# 168.6 1 237.2 23.94 2.24 21.70 46.95 5# 148.8 1 263.6 22.48 2.23 20.25 47.51 此外,橡胶体系中高结构炭黑和低结构炭黑并用,在填充时产生了颗粒互补效应,提高了胶料的分散度和分子链段的运动能力,延长了胶料在硫化过程中的可流动时间,即焦烧时间,也能够进一步改善胶料的加工性能.
2.2 力学性能
大型盾构机的主驱动密封工况严苛,为了防止密封泄露,要求橡胶密封材料能够承受较高的压强,因此,橡胶密封材料需具备优异的硬度、强度和回弹性. 橡胶材料的拉伸应力应变曲线如图4(a)所示,其具体的物理机械性能参数列于表3中,本研究中不同配方的NBR拉伸强度均大于21 MPa,相比于进口主驱动橡胶密封件材料的拉伸强度(14 MPa),提升了50%以上. 主要原因是,在本研究中NBR补强体系采用颗粒较小的高结构炭黑和颗粒较大低结构炭黑并用,2种不同结构炭黑的颗粒之间在填充时发生互补,小的炭黑颗粒填充到了大的炭黑聚集体中间,且2种炭黑在分散过程中因表面活性不同促进了炭黑分散性,解决了炭黑容易聚集的难题,增大了炭黑与橡胶分子链之间的微观接触面积,提升了炭黑的补强效果,提高了橡胶材料的强度[12-13].
在一定范围内,复合增塑剂中松明油的使用量对NBR强度[图4(a)]和压缩永久变形[图4(b)]影响较小,但随复合增塑剂中松明油的使用量由0 phr增加到1.2 phr,NBR硬度降低了9.5%[图4(b)],拉断伸长率增长了59.3%,这是因为松明油中含有的有机酸基团,能够降低橡胶分子链间的作用力,提高胶料的黏着性. 此外,古马隆树脂虽然与橡胶的相容性良好,但因其软化点较高,在开炼机和密炼机中都难分散均匀,本研究中将古马隆树脂、松明油和癸二酸二丁酯预先混合制备成三组份复合增塑剂,能够有效降低古马隆树脂的软化点,既保持了三组份原有功能特性,同时又解决了古马隆软化点较高难分散均匀,松明油和癸二酸二丁酯配料困难等问题.
表 3 不同松明油使用量丁腈橡胶的物理机械性能Table 3. Physical and mechanical properties of NBR with different pine tar contentSamples Hardness (Shore A) Tensile strength/MPa Elongation at break/% Compression permanent deformation/% 1# 84 21.77 464.800 23.0 2# 84 22.83 499.000 22.5 3# 82 23.07 546.350 23.1 4# 81 22.51 684.368 22.7 5# 76 21.98 740.563 22.6 2.3 耐磨性能
橡胶材料的耐磨性能是影响盾构机主驱动密封系统寿命和可靠性的关键因素[14-19]. 本研究中通过摩擦系数、磨损率和不同温度下的阿克隆磨耗量和磨损形貌对比分析了三组份复合增塑剂中不同松明油使用量对NBR耐磨性能的影响. 图5(a)所示为不同含量松明油改性NBR的摩擦系数随时间的变化关系图,图5(b)所示为不同配方NBR的摩擦系数和磨损率,随着复合增塑剂中松明油含量的增加,NBR的摩擦系数和磨损率均先降低再升高,在132 N和70 r/min的条件下,与无松明油添加的1#相比,4#的摩擦系数从0.770降低至0.655,降低了14.9%;4#的磨损率从1.6×10−7 cm3/(N·m)降低至6.8×10−8 cm3/(N·m),降低了57.6%,但当松明油添加量超过0.9 phr时,NBR的摩擦系数和磨损率均大幅度上升. 采用SEM对NBR样品磨损表面微观形貌进行分析,如图6所示,1#和2#摩擦接触表面在交变接触压应力的作用下,循环应力的应力幅超过材料的弹性极限,导致材料表面因疲劳损伤而引起磨损,出现裂纹;当复合增塑剂中松明油添加量在0.6~0.9 phr时,样品表面只有轻微磨痕,无明显磨损,耐磨性能较好;当复合增塑剂中松明油添加量超过0.9 phr时,古马隆树脂在松明油和癸二酸二丁酯的协同作用下,软化点过低,导致胶料的黏着性过高,在摩擦力作用下2个相对滑动的摩擦表面发生塑性变形,橡胶表面和对偶表面发生黏着,橡胶表面因强度较低发生剪切破坏,耐磨性能变差.
在盾构机实际运行工况中,NBR密封材料的工作环境温度可高达90 ℃,因此本研究中开展了不同温度下的阿克隆磨耗试验,研究了不同温度以及极限温度环境对NBR摩擦磨损性能的影响. 图7所示为不同温度下NBR阿克隆磨耗量的变化趋势,阿克隆磨耗量列于表4中,可以看出,相比于室温条件下NBR的阿克隆磨耗量,60 ℃时NBR的阿克隆磨耗量增幅很小,仅约1%;在90 ℃时,NBR的阿克隆磨耗量相比于室温NBR的阿克隆磨耗增长率约9%,在室温~90 ℃的温度范围内,5种配方NBR的阿克隆磨耗量较平稳,说明材料的耐热性能好,化学稳定性高. 其中4#样品在不同温度下的阿克隆磨耗量皆最小,图8所示为4#样品在不同温度下阿克隆磨耗试验后形貌的SEM照片,可以看出:在室温~90 ℃时,4#样品表面无明显磨损,耐磨性能较好,这主要是因为,在本研究中合成的三组份复合增塑剂中,松明油中含有的松节油是1种天然精油,是以蒎烯为主的多种萜烃类的混合物,有特有的化学活性,其间的活性小分子能均匀渗透到古马隆树脂分子中间,使其溶胀,增加分子间的距离及氧的渗透,在摩擦过程中能够在硫化胶表面形成润滑膜而产生自润滑效果;但当松明油的使用量超过0.9 phr时,在硫化的高温条件下和古马隆树脂分子黏附在一起,使得橡胶分子无法分散均匀,并且会在橡胶分子表面变成黏流态,摩擦表面由于黏附作用使材料堆积变形发生黏着磨损,耐磨性能变差,磨耗量增加.
表 4 不同温度下NBR的阿克隆磨耗量Table 4. Akron wear value of NBR at different temperaturesSamples Akron wear value of NBR/(cm³/1.61 km) Room temperature 60 ℃ 90 ℃ 1# 0.116 1 0.116 3 0.121 3 2# 0.114 0 0.114 9 0.120 7 3# 0.110 8 0.110 9 0.120 2 4# 0.107 1 0.109 1 0.117 6 5# 0.116 5 0.117 4 0.126 8 本研究中开发的NBR密封材料已经制备成密封件,在盾构机主驱动密封试验台上开展了模拟密封工况下(密封最大压力:1.0 MPa;密封最大压差:0.1 MPa;主驱动轴最大线速度:3.0 m/s;轴径:2.0 m;密封介质:HBW黑油、EP2黄油和320齿轮油)的密封性能考核,考核结果表明NBR密封件能够实现盾构机运行工况下的有效密封,可以满足盾构机掘进长度大于4 km和等效工作天数大于400天的密封寿命要求. 研制的NBR密封材料能够满足目前国内大型盾构机对主驱动密封件的需求.
3. 结论
a. 以古马隆树脂、癸二酸二丁酯和松明油制备的复合增塑剂在橡胶体系中的分散性和溶解性较高,制备的NBR橡胶密封材料具有较长的焦烧时间和较低的门尼黏度,加工性能优异.
b. 松明油能降低固体古马隆树脂的软化点,通过复合增塑剂中三组分的协同作用,能够有效提高橡胶材料的拉断伸长率,增强橡胶材料的柔韧性.
c. 复合增塑体系中加入0.9 phr松明油时,NBR弹性体的摩擦系数和阿克隆磨耗量低,耐磨性能优异,且该材料的耐磨性能在盾构机主驱动模拟试验台中也进行了验证,可以满足盾构机主驱动系统对密封有效性和寿命的需求.
d. 本文中制备的高性能NBR密封材料,在兼具高强度、高韧性、高回复性、高耐热与高耐磨性的基础上,还满足大型盾构机的成型工艺要求,为大型盾构机主驱动密封的设计制备提供材料支撑.
-
-
[1] The Institution of Mechanical Engineers. Condition monitoring of machinery and plant[M]. London: Mechanical Engineering Publication Ltd, 1985.
[2] Archard J F. Wear theory and mechanism[M]//Peterson M B, Winer W O. Wear control handbook. New York: McGraw-Hill, 1980.
[3] Seifert W W, Westcott V C. A method for the study of wear particles in lubricating oil[J]. Wear, 1972, 21(1): 27–42. doi: 10.1016/0043-1648(72)90247-5.
[4] Scott D, Seifert W W, Westcott V C. The particles of wear[J]. Scientific American, 1974, 230(5): 88–97. doi: 10.1038/scientificamerican0574-88.
[5] 谢友柏, 张鄂. 铁谱技术及其应用[C]. 西安: 西安交通大学, 1985]. Xie Youbai, Zhang E. Ferrography and its application[C]. Xi’an: Xi’an Jiaotong University, 1985
[6] 萧汉梁. 铁谱技术及其在机械监测诊断中的应用[M]. 北京: 人民交通出版社, 1993]. Xiao Hanliang. Ferrography and its application in diagnosis of machines[M]. Beijing: China Communications Press, 1993
[7] 杨其明. 磨粒分析: 磨粒图谱与铁谱技术[M]. 北京: 中国铁道出版社, 2002]. Yang Qiming. Abrasive particle analysis: abrasive particle atlas and ferrography technology[M]. Beijing: China Railway Publishing House, 2002
[8] 彭鹏, 陈李果, 汪久根, 等. 机械磨损的检测技术综述[J]. 润滑与密封, 2018, 43(1): 115–124]. doi: 10.3969/j.issn.0254-0150.2018.01.022. Peng Peng, Chen Liguo, Wang Jiugen, et al. A review on detection technology of mechanical wear[J]. Lubrication Engineering, 2018, 43(1): 115–124 doi: 10.3969/j.issn.0254-0150.2018.01.022
[9] Hong Wei, Cai Wenjian, Wang Shaoping, et al. Mechanical wear debris feature, detection, and diagnosis: a review[J]. Chinese Journal of Aeronautics, 2018, 31(5): 867–882. doi: 10.1016/j.cja.2017.11.016.
[10] 石新发, 贺石中, 谢小鹏, 等. 摩擦学系统润滑磨损故障诊断特征提取研究综述[J]. 摩擦学学报, 2023, 43(3): 241–255]. doi: 10.16078/j.tribology.2021066. Shi Xinfa, He Shizhong, Xie Xiaopeng, et al. Review on feature extraction of lubrication and wear fault diagnosis in tribology system[J]. Tribology, 2023, 43(3): 241–255 doi: 10.16078/j.tribology.2021066
[11] Hofman M V, Johnson J H. The development of Ferrography as a laboratory wear measurement method for the study of engine operating conditions on diesel engine wear[J]. Wear, 1977, 44(1): 183–199. doi: 10.1016/0043-1648(77)90095-3.
[12] Jones M H. Ferrography applied to diesel engine oil analysis[J]. Wear, 1979, 56(1): 93–103. doi: 10.1016/0043-1648(79)90009-7.
[13] Jones M H. Wear debris associated with diesel engine operation[J]. Wear, 1983, 90(1): 75–88. doi: 10.1016/0043-1648(83)90047-9.
[14] Eyre T S, Fitter C. Application of oil analysis techniques to the study of cylinder liner wear[J]. Wear, 1983, 90(1): 31–37. doi: 10.1016/0043-1648(83)90043-1.
[15] Hargis S C, Taylor H F, Gozzo J S. Condition monitoring of marine diesel engines through ferrographic oil analysis[J]. Wear, 1983, 90(2): 225–238. doi: 10.1016/0043-1648(83)90179-5.
[16] Fodor J, Noéh G. Ferrography in internal combustion engine economy[J]. Wear, 1983, 90(2): 293–296. doi: 10.1016/0043-1648(83)90187-4.
[17] 张鄂, 谢友柏, 彭光华, 等. 铁谱技术在汽车发动机磨损状态监测中的应用研究[J]. 西安交通大学学报, 1989, 23(4): 29–36]. doi: 10.1007/BF02006008. Zhang E, Xie Youbai, Peng Guanghua, et al. Application of ferrography to the investigation of wear condition monitoring in automobile engines[J]. Journal of Xi’an Jiaotong University, 1989, 23(4): 29–36 doi: 10.1007/BF02006008
[18] 严新平, 萧汉梁. 6135ACaB型柴油机缸套活塞组主导磨损型式的探讨[J]. 长沙交通学院学报, 1990, 6(4): 44–50]. Yan Xinping, Xiao Hanliang. Discussion on the main wear model of piston rings and cylinder liners of model 6135ACaB diesel engines[J]. Journal of Changsha Communications University, 1990, 6(4): 44–50
[19] Macián V, Payri R, Tormos B, et al. Applying analytical ferrography as a technique to detect failures in Diesel engine fuel injection systems[J]. Wear, 2006, 260(4-5): 562–566. doi: 10.1016/j.wear.2005.03.019.
[20] Levi O, Eliaz N. Failure analysis and condition monitoring of an open-loop oil system using ferrography[J]. Tribology Letters, 2009, 36(1): 17–29. doi: 10.1007/s11249-009-9454-2.
[21] Scott D, Mills G H. An exploratory investigation of the application of ferrography to the monitoring of machinery condition from the gas stream[J]. Wear, 1978, 48(1): 201–208. doi: 10.1016/0043-1648(78)90149-7.
[22] Hoffmann W. Some experience with ferrography in monitoring the condition of aircraft engines[J]. Wear, 1981, 65(3): 307–313. doi: 10.1016/0043-1648(81)90058-2.
[23] Scott D. The application of ferrography to the condition monitoring of gas turbines[J]. Wear, 1983, 90(1): 21–29. doi: 10.1016/0043-1648(83)90042-x.
[24] Smith H A, Saba C S. Ferrographic analysis of polyphenyl ether fluids[J]. Wear, 1993, 161(1-2): 87–92. doi: 10.1016/0043-1648(93)90456-v.
[25] 吴振锋, 左洪福, 孙有朝. 磨粒分析技术及其在发动机故障诊断中的应用[J]. 航空动力学报, 2001, 16(4): 316–322]. doi: 10.13224/j.cnki.jasp.2001.04.004. Wu Zhenfeng, Zuo Hongfu, Sun Youchao. Debris analysis technology and its application to aeroengine fault diagnosis field[J]. Journal of Aerospace Power, 2001, 16(4): 316–322 doi: 10.13224/j.cnki.jasp.2001.04.004
[26] Yardley E D. The use of ferrography and spectrographic oil analysis to monitor the performances of three 90 kW gearboxes[J]. Wear, 1979, 56(1): 213–226. doi: 10.1016/0043-1648(79)90020-6.
[27] Atkin M L, Doyle E D. The condition monitoring of heavily loaded spur gears[J]. Wear, 1983, 88(1): 115–124. doi: 10.1016/0043-1648(83)90317-4.
[28] Schonthall S O E. The use of ferrography in the Danish Navy[J]. Wear, 1983, 90(1): 149–158. doi: 10.1016/0043-1648(83)90053-4.
[29] 刘军, 谢友柏. 铁谱技术对硬齿面齿轮磨损状态的监测研究[J]. 太原重型机械学院学报, 1989, 10(1): 11–19]. Liu Jun, Xie Youbai. Study of the wear condition of surface hardening gear with ferrography technique[J]. Journal of Taiyuan Heavy Machinery Institute, 1989, 10(1): 11–19
[30] Novotny V. Application of ferrography to the condition monitoring of agricultural machinery[J]. Wear, 1983, 90(2): 221–223. doi: 10.1016/0043-1648(83)90178-3.
[31] Varga F. Applications of ferrography to the maintenance of agricultural machinery[J]. Wear, 1983, 90(2): 269–272. doi: 10.1016/0043-1648(83)90184-9.
[32] Morley G R. Comparison of spectrographic and ferrographic analysis of crankcase oils from the High Speed Train[J]. Tribology International, 1981, 14(3): 159–165. doi: 10.1016/0301-679x(81)90064-5.
[33] McCullagh P J, Campbell W E. Application of ferrography to contamination control in fluid power systems[J]. Wear, 1983, 90(1): 89–100. doi: 10.1016/0043-1648(83)90048-0.
[34] Mills G H, Davis F A. A ferrographic case study applied to hydraulic systems[J]. Wear, 1983, 90(1): 101–106. doi: 10.1016/0043-1648(83)90049-2.
[35] Norvelle F D. Contamination control-the key to reliability in fluid power systems[J]. Wear, 1984, 94(1): 47–70. doi: 10.1016/0043-1648(84)90166-2.
[36] Mears D C, Hanley E N, Rutkowski R, et al. Ferrography: its application to the study of human joint wear[J]. Wear, 1978, 50(1): 115–125. doi: 10.1016/0043-1648(78)90250-8.
[37] Evans C H. Application of ferrography to the study of wear and arthritis in human joints[J]. Wear, 1983, 90(2): 281–292. doi: 10.1016/0043-1648(83)90186-2.
[38] Mills G H, Hunter J A. A preliminary use of ferrography in the study of arthritic diseases[J]. Wear, 1983, 90(1): 107–111. doi: 10.1016/0043-1648(83)90050-9.
[39] Russell A P, Westcott V C, Demaria A, et al. The concentration and separation of bacteria and cells by ferrography[J]. Wear, 1983, 90(1): 159–165. doi: 10.1016/0043-1648(83)90054-6.
[40] Barwell F T. The role of particle analysis-a review of ferrography[C]//Proceedings of 10th Leeds-Lyon Symposium on Tribology, New York, 1983: 3-10. doi: 10.1016/B978-0-408-22164-1.50004-1.
[41] Jones M H. Advances in ferrographic analysis of wear debris (techniques evolved to enhance the use of ferrography)[J]. Wear, 1983, 84(1): 111–113. doi: 10.1016/0043-1648(83)90123-0.
[42] Anderson D P. Developments in analytical ferrography[J]. Wear, 1983, 90(2): 187–197. doi: 10.1016/0043-1648(83)90176-x.
[43] Johnson J H, Hubert C J. An overview of recent advances in quantitative ferrography as applied to diesel engines[J]. Wear, 1983, 90(2): 199–219. doi: 10.1016/0043-1648(83)90177-1.
[44] 黄碧华, 裘崇伟, 谢友柏. 柴油机磨损状态监测及故障诊断专家系统知识库建立的研究[J]. 摩擦学学报, 1994, 14(4): 352–359]. Huang Bihua, Qiu Chongwei, Xie Youbai. Research of building a knowledge base of expert system for wear state monitoring and fault diagnosis of diesel engine[J]. Tribology, 1994, 14(4): 352–359
[45] 黄碧华, 裘崇伟, 谢友柏. 柴油机磨损状态监测及故障诊断专家系统领域知识的获取[J]. 摩擦学学报, 1995, 15(1): 76–82]. Huang Bihua, Qiu Chongwei, Xie Youbai. Acquisition of the expert system field knowledge for engine wear condition monitoring and fault diagnosis of diesel[J]. Tribology, 1995, 15(1): 76–82
[46] 汤兵兵, 张来斌, 樊建春. 计算机磨粒识别技术研究进展[J]. 润滑与密封, 2001, 26(6): 36–37,42]. doi: 10.3969/j.issn.0254-0150.2001.06.015. Tang Bingbing, Zhang Laibin, Fan Jianchun. Research review of the computerized wear particles recognition[J]. Lubrication Engineering, 2001, 26(6): 36–37,42 doi: 10.3969/j.issn.0254-0150.2001.06.015
[47] Roylance B J. Ferrography-then and now[J]. Tribology International, 2005, 38(10): 857–862. doi: 10.1016/j.triboint.2005.03.006.
[48] Xiao H L. The development of ferrography in China-some personal reflections[J]. Tribology International, 2005, 38(10): 904–907. doi: 10.1016/j.triboint.2005.03.010.
[49] Raadnui S. Wear particle analysis—utilization of quantitative computer image analysis: a review[J]. Tribology International, 2005, 38(10): 871–878. doi: 10.1016/j.triboint.2005.03.013.
[50] Jardine A K S, Lin Daming, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483–1510. doi: 10.1016/j.ymssp.2005.09.012.
[51] 姚智刚, 王伟钢, 武通海, 等. 油液综合监测数据管理及分析系统[J]. 润滑与密封, 2009, 34(7): 97–101]. doi: 10.3969/j.issn.0254-0150.2009.07.025. Yao Zhigang, Wang Weigang, Wu Tonghai, et al. Data management and synthetic system for oil monitoring[J]. Lubrication Engineering, 2009, 34(7): 97–101 doi: 10.3969/j.issn.0254-0150.2009.07.025
[52] Geng Qichuan, Zhou Zhong, Cao Xiaochun. Survey of recent progress in semantic image segmentation with CNNs[J]. Science China Information Sciences, 2018, 61(5): 051101. doi: 10.1007/s11432-017-9189-6.
[53] Middleton J L, Westcott V C, Wright R W. The number of spherical particles emitted by propagating fatigue cracks in rolling bearings[J]. Wear, 1974, 30(2): 275–277. doi: 10.1016/0043-1648(74)90182-3.
[54] Scott D. Debris examination-a prognostic approach to failure prevention[J]. Wear, 1975, 34(1): 15–22. doi: 10.1016/0043-1648(75)90304-x.
[55] Scott D, Seifert W W, Westcott V C. Ferrography-an advanced design aid for the 80's[J]. Wear, 1975, 34(3): 251–260. doi: 10.1016/0043-1648(75)90094-0.
[56] Scott D, Westcott V C. Predictive maintenance by ferrography[J]. Wear, 1977, 44(1): 173–182. doi: 10.1016/0043-1648(77)90094-1.
[57] Reda A a, Bowen R, Westcott V C. Characteristics of particles generated at the interface between sliding steel surfaces[J]. Wear, 1975, 34(3): 261–273. doi: 10.1016/0043-1648(75)90095-2.
[58] Bowen R, Scott D, Seifert W, et al. Ferrography[J]. Tribology International, 1976, 9(3): 109–115. doi: 10.1016/0301-679x(76)90033-5.
[59] Belmondo A, Giuggioli F, Giorgi B. Optimization of ferrographic oil analysis for diesel engine wear monitoring[J]. Wear, 1983, 90(1): 49–61. doi: 10.1016/0043-1648(83)90045-5.
[60] Adamski A, Stachurski Z H, Stecki J S. Application of ferrography and X-ray mapping to wear analysis of journal bearings[J]. Wear, 1984, 97(2): 129–137. doi: 10.1016/0043-1648(84)90122-4.
[61] Sato T, Ikeda O, Hatsuzawa T, et al. Real-time evaluation of wear particles using electromagnetic forced rotation and laser scattering[J]. Wear, 1987, 115(3): 273–284. doi: 10.1016/0043-1648(87)90217-1.
[62] 杨志伊, 王晓雷, 唐小行. 铁谱仪的新发展: KTP型旋转式铁谱仪[J]. 设备管理与维修, 1990, (7): 22–24]. Yang Zhiyi, Wang Xiaolei, Tang XiaoXing. New development of ferrography-KTP rotating ferrography[J]. Plant Maintenance Engineering, 1990, (7): 22–24
[63] 严新平, 李晓峰, 萧汉梁. 设备磨损的直读铁谱分析软件[J]. 中国设备管理, 1996, (3): 30–32]. Yan Xinping, Li Xiaofeng, Xiao Hanliang. Soft ware of direct ferrography for equipment wear[J]. China Plant Engineering, 1996, (3): 30–32
[64] Barwell F T, Bowen E R, Bowen J P, et al. The use of temper colors in ferrography[J]. Wear, 1977, 44(1): 163–171. doi: 10.1016/0043-1648(77)90093-x.
[65] 萧汉梁, 严新平. 铁谱加热分析法的试验研究[J]. 武汉水运工程学院学报, 1990, 14(3): 260–264]. Xiao Hanliang, Yan Xinping. Research on heated ferrogram analysis[J]. Journal of Wuhan University of Water Transportation Engineering, 1990, 14(3): 260–264
[66] Chiou Y C, Lee R T, Tsai C Y. An on-line Hall-effect device for monitoring wear particle in oils[J]. Wear, 1998, 223(1-2): 44–49. doi: 10.1016/s0043-1648(98)00289-0.
[67] Lukas M, Anderson D P, Sebok T, et al. LaserNet finesTM-a new tool for the oil analysis toolbox[J]. Practis Oil Annual, 2002, 8: 40,42–47.
[68] Myshkin N K, Markova L V, Semenyuk M S, et al. Wear monitoring based on the analysis of lubricant contamination by optical ferroanalyzer[J]. Wear, 2003, 255(7-12): 1270–1275. doi: 10.1016/s0043-1648(03)00175-3.
[69] Dempsey P J, Afjeh A A. Integrating oil debris and vibration gear damage detection technologies using fuzzy logic[J]. Journal of the American Helicopter Society, 2004, 49(2): 109–116. doi: 10.4050/jahs.49.109.
[70] Laghari M S, Memon Q A, Khuwaja G A. Knowledge based wear particle analysis[J]. International Journal of Information Technology, 2004, 1(3): 91–95. doi: 10.5281/zenodo.1084732.
[71] Raadnui S, Kleesuwan S. Low-cost condition monitoring sensor for used oil analysis[J]. Wear, 2005, 259(7-12): 1502–1506. doi: 10.1016/j.wear.2004.11.009.
[72] Murali S, Jagtiani A V, Xia X G, et al. A microfluidic Coulter counting device for metal wear detection in lubrication oil[J]. Review of Scientific Instruments, 2009, 80(1): 016105. doi: 10.1063/1.3072665.
[73] 姚远, 王静秋, 王晓雷. 一种旋转式铁谱仪机电一体化方案设计[J]. 润滑与密封, 2012, 37(11): 83–86,115]. doi: 10.3969/j.issn.0254-0150.2012.11.019. Yao Yuan, Wang Jingqiu, Wang Xiaolei. A mechatronic design for rotary ferrograph[J]. Lubrication Engineering, 2012, 37(11): 83–86,115 doi: 10.3969/j.issn.0254-0150.2012.11.019
[74] Fernandez-Sanchez E J, Diaz J, Ros E. Background subtraction based on color and depth using active sensors[J]. Sensors, 2013, 13(7): 8895–8915. doi: 10.3390/s130708895.
[75] Du Li, Zhe Jiang, Carletta J, et al. Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter counting device[J]. Microfluidics and Nanofluidics, 2010, 9(6): 1241–1245. doi: 10.1007/s10404-010-0627-y.
[76] Du Li, Zhe Jiang. A high throughput inductive pulse sensor for online oil debris monitoring[J]. Tribology International, 2011, 44(2): 175–179. doi: 10.1016/j.triboint.2010.10.022.
[77] Du Li, Zhe Jiang. Parallel sensing of metallic wear debris in lubricants using undersampling data processing[J]. Tribology International, 2012, 53: 28–34. doi: 10.1016/j.triboint.2012.04.005.
[78] Du Li, Zhu Xiaoliang, Han Yu, et al. Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method[J]. Measurement Science and Technology, 2013, 24(7): 075106. doi: 10.1088/0957-0233/24/7/075106.
[79] Du Li, Zhe Jiang. An integrated ultrasonic–inductive pulse sensor for wear debris detection[J]. Smart Materials and Structures, 2013, 22(2): 025003. doi: 10.1088/0964-1726/22/2/025003.
[80] Du Li, Zhu Xiaoliang, Han Yu, et al. High throughput wear debris detection in lubricants using a resonance frequency division multiplexed sensor[J]. Tribology Letters, 2013, 51(3): 453–460. doi: 10.1007/s11249-013-0179-x.
[81] Hong W, Wang S P, Tomovic M, et al. Radial inductive debris detection sensor and performance analysis[J]. Measurement Science and Technology, 2013, 24(12): 125103. doi: 10.1088/0957-0233/24/12/125103.
[82] Hong Wei, Wang Shaoping, Tomovic M M, et al. A new debris sensor based on dual excitation sources for online debris monitoring[J]. Measurement Science and Technology, 2015, 26(9): 095101. doi: 10.1088/0957-0233/26/9/095101.
[83] Hong Wei, Wang Shaoping, Liu Haokuo, et al. A hybrid method based on Band Pass Filter and Correlation Algorithm to improve debris sensor capacity[J]. Mechanical Systems and Signal Processing, 2017, 82: 1–12. doi: 10.1016/j.ymssp.2015.10.002.
[84] Hong Wei, Wang Shaoping, Tomovic M M, et al. A novel indicator for mechanical failure and life prediction based on debris monitoring[J]. IEEE Transactions on Reliability, 2017, 66(1): 161–169. doi: 10.1109/TR.2016.2628412.
[85] Wen Z, Yin X, Jiang Z. Applications of electrostatic sensor for wear debris detecting in the lubricating oil[J]. Journal of the Institution of Engineers (India): Series C, 2013, 94(3): 281–286. doi: 10.1007/s40032-013-0072-2.
[86] Xu Chao, Zhang Peilin, Wang Huaiguang, et al. Ultrasonic echo waveshape features extraction based on QPSO-matching pursuit for online wear debris discrimination[J]. Mechanical Systems and Signal Processing, 2015, 60: 301–315. doi: 10.1016/j.ymssp.2015.01.002.
[87] Peng Yeping, Wu Tonghai, Cao Guangzhong, et al. A hybrid search-tree discriminant technique for multivariate wear debris classification[J]. Wear, 2017, 392–393: 152–158. doi: 10.1016/j.wear.2017.09.022.
[88] Zhu Xiaoliang, Du Li, Zhe Jiang. A 3 × 3 wear debris sensor array for real time lubricant oil conditioning monitoring using synchronized sampling[J]. Mechanical Systems and Signal Processing, 2017, 83: 296–304. doi: 10.1016/j.ymssp.2016.06.014.
[89] Jia Ran, Ma Biao, Zheng Changsong, et al. Comprehensive improvement of the sensitivity and detectability of a large-aperture electromagnetic wear particle detector[J]. Sensors, 2019, 19(14): 3162. doi: 10.3390/s19143162.
[90] Xiao Hong, Wang Xinyu, Li Hongcheng, et al. An inductive debris sensor for a large-diameter lubricating oil circuit based on a high-gradient magnetic field[J]. Applied Sciences, 2019, 9(8): 1546. doi: 10.3390/app9081546.
[91] Yardley E D, Moreton G. An attempt to quantify the limits of failure detection by ferrography[J]. Wear, 1983, 90(2): 273–279. doi: 10.1016/0043-1648(83)90185-0.
[92] Odi-Owei S, Price A L, Roylance B J. An assessment of quantimet as an aid in the analysis of wear debris in ferrography[J]. Wear, 1976, 40(2): 237–253. doi: 10.1016/0043-1648(76)90101-0.
[93] Blau P J. A simple method for cross-sectional examination of wear debris flakes[J]. Wear, 1981, 66(2): 257–258. doi: 10.1016/0043-1648(81)90118-6.
[94] Pocock G, Courtney S J. Some quantitative aspects of ferrography[J]. Wear, 1981, 67(3): 287–301. doi: 10.1016/0043-1648(81)90043-0.
[95] Hampson L G. The interpretation of data from wear debris analysis, with particular reference to ferrography[J]. Wear, 1981, 70(3): 335–345. doi: 10.1016/0043-1648(81)90354-9.
[96] Sarkar A D. The role of wear debris in the study of wear[J]. Wear, 1983, 90(1): 39–47. doi: 10.1016/0043-1648(83)90044-3.
[97] Jones D G, Kwon O K, Vaughan D A. The deleterious effect arising from preparation of ferrograms in ferrography and the consequences in subsequent analysis of wear particulates[J]. Wear, 1983, 90(1): 63–73. doi: 10.1016/0043-1648(83)90046-7.
[98] Roylance B J, Pocock G. Wear studies through particle size distribution I: application of the Weibull distribution to ferrography[J]. Wear, 1983, 90(1): 113–136. doi: 10.1016/0043-1648(83)90051-0.
[99] Roylance B J, Vaughan D A. Wear studies through particle size distribution II: multiple field analysis in Ferrography[J]. Wear, 1983, 90(1): 137–147. doi: 10.1016/0043-1648(83)90052-2.
[100] Barwell F T. The contribution of particle analysis to the study of wear of metals[J]. Wear, 1983, 90(1): 167–181. doi: 10.1016/0043-1648(83)90055-8.
[101] Anderson D N, Hubert C J, Johnson J H. Advances in quantitative analytical ferrography and the evaluation of a high gradient magnetic separator for the study of diesel engine wear[J]. Wear, 1983, 90(2): 297–333. doi: 10.1016/0043-1648(83)90188-6.
[102] Hubert C J, Beck J W, Johnson J H. A model and the methodology for determining wear particle generation rate and filter efficiency in a diesel engine using ferrography[J]. Wear, 1983, 90(2): 335–379. doi: 10.1016/0043-1648(83)90189-8.
[103] Jin Yuansheng, Yang Qiming. Ferrographic analysis of wear debris generated in locomotive diesel engines[J]. Wear, 1984, 93(1): 23–32. doi: 10.1016/0043-1648(84)90174-1.
[104] Jin Yuansheng, Wang Chengbiao. Spherical particles generated during the running-in period of a diesel engine[J]. Wear, 1989, 131(2): 315–328. doi: 10.1016/0043-1648(89)90172-5.
[105] Flanagan I M, Jordan J R, Whittington H W. Wear-debris detection and analysis techniques for lubricant-based condition monitoring[J]. Journal of Physics E: Scientific Instruments, 1988, 21(11): 1011–1016. doi: 10.1088/0022-3735/21/11/001.
[106] Centers P W, Price F D. Real time simultaneous in-line wear and lubricant condition monitoring[J]. Wear, 1988, 123(3): 303–312. doi: 10.1016/0043-1648(88)90146-9.
[107] Wakefield G R, Levinsohn H. An assessment of quantitative and qualitative ferrography[J]. Wear, 1988, 126(1): 31–55. doi: 10.1016/0043-1648(88)90107-x.
[108] Akagaki T, Kato K. Ferrographic analysis of failure process in a full-scale journal bearing[J]. Wear, 1992, 152(2): 241–252. doi: 10.1016/0043-1648(92)90123-p.
[109] 严新平, 谢友柏, 董龙珠. 油液分析诊断软件包的系统分析[J]. 润滑与密封, 1996, 21(5): 62–63,57]. Yan Xinping, Xie Youbai, Dong Longzhu. Systematic analysis of oil with diagnostic software[J]. Lubrication Engineering, 1996, 21(5): 62–63,57
[110] 朱新河, 严新平, 范世东. 一种新的铁谱磨损监测定量参数[J]. 摩擦学学报, 1996, 16(1): 70–74]. doi: 10.16078/j.tribology.1996.01.011. Zhu Xinhe, Yan Xinping, Fan Shidong. A new quantitave idex used by ferrographic monitoring[J]. Tribology, 1996, 16(1): 70–74 doi: 10.16078/j.tribology.1996.01.011
[111] 王晓雷, 程坚, 杨志伊. 铁谱定量分析中的磨损状态识别[J]. 中国矿业大学学报, 1996, 25(3): 64–68]. Wang Xiaolei, Cheng Jian, Yang Zhiyi. To identify the wear state by quantitative ferrography[J]. Journal of China University of Mining & Technology, 1996, 25(3): 64–68
[112] Podsiadlo P, Kuster M, Stachowiak G W. Numerical analysis of wear particles from non-arthritic and osteoarthritic human knee joints[J]. Wear, 1997, 210(1-2): 318–325. doi: 10.1016/s0043-1648(97)00061-6.
[113] 刘岩, 温诗铸, 谢友柏, 等. 机器系统磨粒平衡浓度及取油样问题的新见解[J]. 清华大学学报(自然科学版), 1997, 37(8): 105–108]. doi: 10.16511/j.cnki.qhdxxb.1997.08.029. Liu Yan, Wen Shizhu, Xie Youbai, et al. New view on debris equilibrium concentration and oil sampling in machine system[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 105–108 doi: 10.16511/j.cnki.qhdxxb.1997.08.029
[114] Liu Yan, Xie Youbai, Zhao Fang, et al. Revision to the concept of equilibrium concentration of particles in lubrication system of machines[J]. Wear, 1998, 215(1-2): 205–210. doi: 10.1016/s0043-1648(97)00269-x.
[115] 严新平, 谢友柏, 萧汉梁. 摩擦学故障种类诊断的D-S信息融合研究[J]. 摩擦学学报, 1999, 19(2): 145–150]. doi: 10.3321/j.issn:1004-0595.1999.02.011. Yan Xinping, Xie Youbai, Xiao Hanliang. Research on data fusion for diagnosing types of tribological failures by dampster-shafer[J]. Tribology, 1999, 19(2): 145–150 doi: 10.3321/j.issn:1004-0595.1999.02.011
[116] Cho U, Tichy J A. Quantitative correlation of wear debris morphology: grouping and classification[J]. Tribology International, 2000, 33(7): 461–467. doi: 10.1016/s0301-679x(00)00074-8.
[117] 吴刚, 吕植勇, 严新平, 等. 铁谱磨粒磁化方向的自动识别方法[J]. 润滑与密封, 2003, 28(2): 30–32]. doi: 10.3969/j.issn.0254-0150.2003.02.012. Wu Gang, Lü Zhiyong, Yan Xinping, et al. Research on the magnetization direction of wear particle[J]. Lubrication Engineering, 2003, 28(2): 30–32 doi: 10.3969/j.issn.0254-0150.2003.02.012
[118] Mandelbrot B B. The fractal geometry of nature[M]. New York: W. H. Freeman and Company, 1977.
[119] Berthier Y, Wehbei D, Wack J, et al. Paper IV(iv) Fractals: a method of characterisation of third body morphology[C]//Interface Dynamics, Proceedings of the 14th Leeds-Lyon Symposium on Tribology. New York, 1987: 105–108. doi: 10.1016/s0167-8922(08)71054-x.
[120] Kirk T B, Stachowiak G W, Batchelor A W. Fractal parameters and computer image analysis applied to wear particles isolated by ferrography[J]. Wear, 1991, 145(2): 347–365. doi: 10.1016/0043-1648(91)90141-g.
[121] Podsiadlo P, Stachowiak G W. Evaluation of boundary fractal methods for the characterization of wear particles[J]. Wear, 1998, 217(1): 24–34. doi: 10.1016/s0043-1648(98)00168-9.
[122] Ge Shirong, Chen Guoan, Zhang Xiaoyun. Fractal characterization of wear particle accumulation in the wear process[J]. Wear, 2001, 251(1): 1227–1233. doi: 10.1016/s0043-1648(01)00763-3.
[123] Beddow J K, Fong S T, Vetter A F. Morphological analysis of metallic wear debris[J]. Wear, 1980, 58(2): 201–211. doi: 10.1016/0043-1648(80)90150-7.
[124] Roylance B J, Raadnui S. The morphological attributes of wear particles-their role in identifying wear mechanisms[J]. Wear, 1994, 175(1-2): 115–121. doi: 10.1016/0043-1648(94)90174-0.
[125] Peng Z, Kirk T B. Two-dimensional fast Fourier transform and power spectrum for wear particle analysis[J]. Tribology International, 1997, 30(8): 583–590. doi: 10.1016/s0301-679x(97)00026-1.
[126] Williams J A. Wear and wear particles-some fundamentals[J]. Tribology International, 2005, 38(10): 863–870. doi: 10.1016/j.triboint.2005.03.007.
[127] Stachowiak G W. Numerical characterization of wear particles morphology and angularity of particles and surfaces[J]. Tribology International, 1998, 31(1-3): 139–157. doi: 10.1016/s0301-679x(98)00016-4.
[128] Stachowiak G W, Podsiadlo P. Surface characterization of wear particles[J]. Wear, 1999, 225–229: 1171–1185. doi: 10.1016/s0043-1648(98)00397-4.
[129] Podsiadlo P, Stachowiak G W. Scale-invariant analysis of wear particle morphology-a preliminary study[J]. Tribology International, 2000, 33(3-4): 289–295. doi: 10.1016/s0301-679x(00)00044-x.
[130] Podsiadlo P, Stachowiak G W. Scale-invariant analysis of wear particle surface morphology I-theoretical background, computer implementation and technique testing[J]. Wear, 2000, 242(1-2): 160–179. doi: 10.1016/s0043-1648(00)00416-6.
[131] Podsiado P, Stachowiak G W. Scale-invariant analysis of wear particle surface morphology II: fractal dimension[J]. Wear, 2000, 242(1-2): 180–188. doi: 10.1016/S0043-1648(00)00417-8.
[132] Podsiado P, Stachowiak G W. Scale-invariant analysis of wear particle surface morphology III: pattern recognition[J]. Wear, 2000, 242(1-2): 189–201. doi: 10.1016/s0043-1648(00)00418-x.
[133] Yuan C Q, Li J, Yan X P, et al. The use of the fractal description to characterize engineering surfaces and wear particles[J]. Wear, 2003, 255(1-6): 315–326. doi: 10.1016/s0043-1648(03)00206-0.
[134] Yuan Chengqing, Peng Zhongxiao, Yan Xinping. Surface characterization using wavelet theory and confocal laser scanning microscopy[J]. Journal of Tribology, 2005, 127(2): 394–404. doi: 10.1115/1.1866161.
[135] 袁成清, 严新平, 彭中笑. 磨粒的三维表面特征描述[J]. 摩擦学学报, 2007, 27(3): 294–296]. doi: 10.3321/j.issn:1004-0595.2007.03.020. Yuan Chengqing, Yan Xinping, Peng Zhongxiao. Three-dimensional surface characterization of wear debris[J]. Tribology, 2007, 27(3): 294–296 doi: 10.3321/j.issn:1004-0595.2007.03.020
[136] Yuan C Q, Peng Z, Zhou X C, et al. The surface roughness evolutions of wear particles and wear components under lubricated rolling wear condition[J]. Wear, 2005, 259(1-6): 512–518. doi: 10.1016/j.wear.2004.11.011.
[137] Yuan C Q, Peng Z, Yan X P, et al. Surface roughness evolutions in sliding wear process[J]. Wear, 2008, 265(3-4): 341–348. doi: 10.1016/j.wear.2007.11.002.
[138] Guo Zhiwei, Yuan Chengqing, Yan Xinping, et al. 3D surface characterizations of wear particles generated from lubricated regular concave cylinder liners[J]. Tribology Letters, 2014, 55(1): 131–142. doi: 10.1007/s11249-014-0340-1.
[139] Podsiadlo P, Stachowiak G W. Development of advanced quantitative analysis methods for wear particle characterization and classification to aid tribological system diagnosis[J]. Tribology International, 2005, 38(10): 887–897. doi: 10.1016/j.triboint.2005.03.008.
[140] Stachowiak G W, Podsiadlo P. Towards the development of an automated wear particle classification system[J]. Tribology International, 2006, 39(12): 1615–1623. doi: 10.1016/j.triboint.2006.01.019.
[141] Stachowiak G P, Stachowiak G W, Podsiadlo P. Automated classification of wear particles based on their surface texture and shape features[J]. Tribology International, 2008, 41(1): 34–43. doi: 10.1016/j.triboint.2007.04.004.
[142] Kowandy C, Richard C, Chen Y M, et al. Correlation between the tribological behaviour and wear particle morphology—case of grey cast iron 250 versus Graphite and PTFE[J]. Wear, 2007, 262(7-8): 996–1006. doi: 10.1016/j.wear.2006.10.015.
[143] Hudnik V, Vižintin J. Key parameters for the reliable prediction of machine failure using wear particle analysis[J]. Tribology International, 1991, 24(2): 95–98. doi: 10.1016/0301-679x(91)90039-c.
[144] Roylance B J, Williams J A, Dwyer-Joyce R. Wear debris and associated wear phenomena—fundamental research and practice[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2000, 214(1): 79–105. doi: 10.1243/1350650001543025.
[145] 于世强, 戴兴建. 基于背景色彩识别的磨粒图像分割方法[J]. 摩擦学学报, 2007, 27(5): 467–471]. doi: 10.3321/j.issn:1004-0595.2007.05.014. Yu Shiqiang, Dai Xingjian. Wear particle image segmentation method based on the recognition of background color[J]. Tribology, 2007, 27(5): 467–471 doi: 10.3321/j.issn:1004-0595.2007.05.014
[146] 王静秋, 张龙, 王晓雷. 融合颜色聚类和分水岭算法的铁谱图像分割[J]. 中国矿业大学学报, 2013, 42(5): 866–872]. doi: 10.13247/j.cnki.jcumt.2013.05.025. Wang Jingqiu, Zhang Long, Wang Xiaolei. Ferrographic image segmentation by the method combining k-means clustering and watershed algorithm[J]. Journal of China University of Mining & Technology, 2013, 42(5): 866–872 doi: 10.13247/j.cnki.jcumt.2013.05.025
[147] Wang Jing qiu, Wang Xiao lei. The segmentation of ferrography images: a brief survey[J]. Materials Science Forum, 2013, 770: 427–432. doi: 10.4028/www.scientific.net/msf.770.427.
[148] Wang Jingqiu, Zhang Long, Lu Fengxia, et al. The segmentation of wear particles in ferrograph images based on an improved ant colony algorithm[J]. Wear, 2014, 311(1-2): 123–129. doi: 10.1016/j.wear.2014.01.004.
[149] Wang Jingqiu, Yao Panpan, Liu Wanlong, et al. A hybrid method for the segmentation of a ferrograph image using marker-controlled watershed and grey clustering[J]. Tribology Transactions, 2016, 59(3): 513–521. doi: 10.1080/10402004.2015.1091534.
[150] Liu Xinliang, Wang Jingqiu, Sun Kang, et al. Semantic segmentation of ferrography images for automatic wear particle analysis[J]. Engineering Failure Analysis, 2021, 122: 105268. doi: 10.1016/j.engfailanal.2021.105268.
[151] Sun Kang, Liu Xinliang, Chen Guoning, et al. Wear debris recognition and quantification in ferrography images by instance segmentation[J]. Tribology Transactions, 2022, 65(3): 508–518. doi: 10.1080/10402004.2022.2037800.
[152] Liu Hong, Wei Haijun, Xie Haibo, et al. Unsupervised segmentation of wear particle’s image using local texture feature[J]. Industrial Lubrication and Tribology, 2018, 70(9): 1601–1607. doi: 10.1108/ilt-09-2017-0275.
[153] Feng Song, Qiu Guang, Luo Jiufei, et al. A wear debris segmentation method for direct reflection online visual ferrography[J]. Sensors, 2019, 19(3): 723. doi: 10.3390/s19030723.
[154] Han Leng, Feng Song, Qiu Guang, et al. Segmentation of online ferrograph images with strong interference based on uniform discrete curvelet transformation[J]. Sensors, 2019, 19(7): 1546. doi: 10.3390/s19071546.
[155] Peng Peng, Wang Jiugen. Analysis of oxide wear debris using ferrography image segmentation[J]. Industrial Lubrication and Tribology, 2019, 71(7): 901–906. doi: 10.1108/ilt-09-2018-0355.
[156] Peng Peng, Wang Jiugen. Wear particle classification considering particle overlapping[J]. Wear, 2019, 422–423: 119–127. doi: 10.1016/j.wear.2019.01.060.
[157] Thomas A D H, Davies T, Luxmoore A R. Computer image analysis for identification of wear particles[J]. Wear, 1991, 142(2): 213–226. doi: 10.1016/0043-1648(91)90165-q.
[158] Peng Z, Kirk T B, Xu Z L. The development of three-dimensional imaging techniques of wear particle analysis[J]. Wear, 1997, 203–204: 418–424. doi: 10.1016/s0043-1648(96)07371-1.
[159] Peng Z, Kirk T B. Computer image analysis of wear particles in three-dimensions for machine condition monitoring[J]. Wear, 1998, 223(1-2): 157–166. doi: 10.1016/s0043-1648(98)00280-4.
[160] Peng Z, Kirk T B. Wear particle classification in a fuzzy grey system[J]. Wear, 1999, 225–229: 1238–1247. doi: 10.1016/s0043-1648(98)00400-1.
[161] Myshkin N K, Kong H, Grigoriev A Y, et al. The use of color in wear debris analysis[J]. Wear, 2001, 251: 1218–1226. doi: 10.1016/s0043-1648(01)00751-7.
[162] Cho U, Tichy J A. A study of two-dimensional binary images of wear debris as an indicator of distinct wear conditions[J]. Tribology Transactions, 2001, 44(1): 132–136. doi: 10.1080/10402000108982436.
[163] 何晓昀, 吕植勇, 李大光, 等. 一种基于HSI色度空间的磨粒成分分析法[J]. 武汉理工大学学报(信息与管理工程版), 2005, 27(5): 1–4]. doi: 10.3963/j.issn.1007-144X.2005.05.001. He Xiaoyun, Lv Zhiyong, Li Daguang, et al. Debris analysis with PCA in an HIS color model[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2005, 27(5): 1–4 doi: 10.3963/j.issn.1007-144X.2005.05.001
[164] 李大光, 吕植勇, 何晓昀, 等. 基于图像处理的铁谱覆盖面积回归分析[J]. 内燃机学报, 2006, 24(6): 554–558]. doi: 10.16236/j.cnki.nrjxb.2006.06.013. Li Daguang, Lü Zhiyong, He Xiaoyun, et al. Regress analysis of ferrogram cover area based on image processing[J]. Transactions of CSICE, 2006, 24(6): 554–558 doi: 10.16236/j.cnki.nrjxb.2006.06.013
[165] 陈桂明, 谢友柏, 江良洲, 等. 图像颜色特征提取在铁谱图像分类及磨粒识别中的应用研究[J]. 中国机械工程, 2006, 17(15): 1576–1580]. doi: 10.3321/j.issn:1004-132X.2006.15.009. Chen Guiming, Xie Youbai, Jiang Liangzhou. Application study of color feature extraction on ferrographic image classifying and particle recognition[J]. China Mechanical Engineering, 2006, 17(15): 1576–1580 doi: 10.3321/j.issn:1004-132X.2006.15.009
[166] Chen Shiwei, Li Zhuguo, Xu Qisheng. Grey target theory based equipment condition monitoring and wear mode recognition[J]. Wear, 2006, 260(4-5): 438–449. doi: 10.1016/j.wear.2005.02.085.
[167] Hu Xianguo, Huang Peng, Zheng Shousen. On the pretreatment process for the object extraction in color image of wear debris[J]. International Journal of Imaging Systems and Technology, 2007, 17(5): 277–284. doi: 10.1002/ima.20121.
[168] Wang Jingqiu, Wang Xiaolei. A wear particle identification method by combining principal component analysis and grey relational analysis[J]. Wear, 2013, 304(1-2): 96–102. doi: 10.1016/j.wear.2013.04.021.
[169] Yuan Wei, Chin K S, Hua Meng, et al. Shape classification of wear particles by image boundary analysis using machine learning algorithms[J]. Mechanical Systems and Signal Processing, 2016, 72–73: 346–358. doi: 10.1016/j.ymssp.2015.10.013.
[170] 王超, 武彬, 毛军红, 等. 发动机台架试验在线图像可视铁谱磨损监测系统研究与开发[J]. 内燃机工程, 2016, 37(4): 107–112]. doi: 10.13949/j.cnki.nrjgc.2016.04.018. Wang Chao, Wu Bin, Mao Junhong, et al. Research and development of on-line visual ferrography wear monitoring system for engine bench tests[J]. Chinese Internal Combustion Engine Engineering, 2016, 37(4): 107–112 doi: 10.13949/j.cnki.nrjgc.2016.04.018
[171] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
[172] 闫建阳, 陈小虎, 陈俊康. 基于铁谱图像异类特征融合的磨损类型识别方法[J]. 润滑与密封, 2020, 45(3): 113–120]. doi: 10.3969/j.issn.0254-0150.2020.03.020. Yan Jianyang, Chen Xiaohu, Chen Junkang. Wear type recognition method based on heterogeneous feature fusion of iron spectrum images[J]. Lubrication Engineering, 2020, 45(3): 113–120 doi: 10.3969/j.issn.0254-0150.2020.03.020
[173] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076.
[174] Peng Z, Kessissoglou N J, Cox M. A study of the effect of contaminant particles in lubricants using wear debris and vibration condition monitoring techniques[J]. Wear, 2005, 258(11-12): 1651–1662. doi: 10.1016/j.wear.2004.11.020.
[175] Wang Jingqiu, Liu Xinliang, Wu Ming, et al. Direct detection of wear conditions by classification of ferrograph images[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(4): 152. doi: 10.1007/s40430-020-2235-4.
[176] Shah H, Hirani H. Online condition monitoring of spur gears[J]. International Journal of Condition Monitoring, 2014, 4(1): 15–22. doi: 10.1784/204764214813883298.
[177] Centers P W. Laboratory evaluation of the on-line ferrograph[J]. Wear, 1983, 90(1): 1-9. doi: 10.1016/0043-1648(83)90040-6.
[178] Holzhauer W, Murray S F. Continuous wear measurement by on-line ferrography[J]. Wear, 1983, 90: 11–19. doi: 10.1016/0043-1648(83)90041-8.
[179] Chambers K W, Arneson M C, Waggoner C A. An on-line ferromagnetic wear debris sensor for machinery condition monitoring and failure detection[J]. Wear, 1988, 128(3): 325–337. doi: 10.1016/0043-1648(88)90067-1.
[180] Liu Yan, Xie Youbai, Yuan Chongjun, et al. Research on an on-line ferrograph[J]. Wear, 1992, 153(2): 323–330. doi: 10.1016/0043-1648(92)90173-6.
[181] Zhu Xiaoliang, Zhong Chong, Zhe Jiang. Lubricating oil conditioning sensors for online machine health monitoring-a review[J]. Tribology International, 2017, 109: 473–484. doi: 10.1016/j.triboint.2017.01.015.
[182] 赵方, 谢友柏, 刘岩. 齿轮磨损状态的在线铁谱监测试验研究[J]. 机械科学与技术, 1996, 15(5): 786–789]. doi: 10.3969/j.issn.1001-3997.2017.11.049. Zhao Fang, Xie Youbai, Liu Yan. Experimental study of on-line ferrography monitoring of gear wear condition[J]. Mechanical Science and Technology, 1996, 15(5): 786–789 doi: 10.3969/j.issn.1001-3997.2017.11.049
[183] Liu Yan, Wen Shizhu, Xie Youbai. An on-line condition monitoring system linked by fibre-optic digital network[J]. Tribology International, 1997, 30(4): 275–278. doi: 10.1016/s0301-679x(96)00055-2.
[184] Liu Yan, Wen Shizhu, Xie Youbai, et al. Advances in research on a multi-channel on-line ferrograph[J]. Tribology International, 1997, 30(4): 279–282. doi: 10.1016/s0301-679x(96)00056-4.
[185] 刘岩, 谢友柏, 黄广龙, 等. 一种摩擦学状态在线监测系统的研究[J]. 摩擦学学报, 1998, 18(4): 341–345]. doi: 10.16078/j.tribology.1998.04.011. Liu Yan, Xie Youbai, Huang Guanglong, et al. Research on a tribological condition on-line monitoring system[J]. Tribology, 1998, 18(4): 341–345 doi: 10.16078/j.tribology.1998.04.011
[186] Liu Yan, Liu Zhong, Xie Youbai, et al. Research on an on-line wear condition monitoring system for marine diesel engine[J]. Tribology International, 2000, 33(12): 829–835. doi: 10.1016/s0301-679x(00)00128-6.
[187] Liu Yan, Liu Zhong, Wen Shizhu, et al. Motion analysis on the particles in a magnetic field detector[J]. Tribology International, 2000, 33(12): 837–843. doi: 10.1016/s0301-679x(00)00129-8.
[188] Hong H, Liang M. A fractional calculus technique for on-line detection of oil debris[J]. Measurement Science and Technology, 2008, 19(5): 055703. doi: 10.1088/0957-0233/19/5/055703.
[189] Fan X, Liang M, Yeap T. A joint time-invariant wavelet transform and kurtosis approach to the improvement of in-line oil debris sensor capability[J]. Smart Material and Structures, 2009, 18(8): 085010. doi: 10.1088/0964-1726/18/8/085010.
[190] 武通海, 邱辉鹏, 吴教义, 等. 图像可视在线铁谱传感器的图像数字化处理技术[J]. 机械工程学报, 2008, 44(9): 83–87]. doi: 10.3321/j.issn:0577-6686.2008.09.014. Wu Tonghai, Qiu Huipeng, Wu Jiaoyi, et al. Image digital processing technology for visual on-line ferrograph sensor[J]. Chinese Journal of Mechanical Engineering, 2008, 44(9): 83–87 doi: 10.3321/j.issn:0577-6686.2008.09.014
[191] Wu T H, Mao J H, Wang J T, et al. A new on-line visual ferrograph[J]. Tribology Transactions, 2009, 52(5): 623–631. doi: 10.1080/10402000902825762.
[192] Wu T H, Wang J Q, Wu J Y, et al. Wear characterization by an on-line ferrograph image[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225(1): 23–34. doi: 10.1177/13506501jet858.
[193] Wu Tonghai, Wang Junqun, Peng Yeping, et al. Description of wear debris from on-line ferrograph images by their statistical color[J]. Tribology Transactions, 2012, 55(5): 606–614. doi: 10.1080/10402004.2012.686086.
[194] Wu Jiaoyi, Mi Xinyan, Wu Tonghai, et al. A wavelet-analysis-based differential method for engine wear monitoring via on-line visual ferrograph[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227(12): 1356–1366. doi: 10.1177/1350650113492597.
[195] Wu Tonghai, Wu Hongkun, Du Ying, et al. Imaged wear debris separation for on-line monitoring using gray level and integrated morphological features[J]. Wear, 2014, 316(1-2): 19–29. doi: 10.1016/j.wear.2014.04.014.
[196] Wu Tonghai, Peng Yeping, Sheng Chenxing, et al. Intelligent identification of wear mechanism via on-line ferrograph images[J]. Chinese Journal of Mechanical Engineering, 2014, 27(2): 411–417. doi: 10.3901/cjme.2014.02.411.
[197] Wu Tonghai, Peng Yeping, Wu Hongkun, et al. Full-life dynamic identification of wear state based on on-line wear debris image features[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 404–414. doi: 10.1016/j.ymssp.2013.08.032.
[198] Wu Tonghai, Peng Yeping, Du Ying, et al. Dimensional description of on-line wear debris images for wear characterization[J]. Chinese Journal of Mechanical Engineering, 2014, 27(6): 1280–1286. doi: 10.3901/CJME.2014.0808.132.
[199] Wu Hongkun, Wu Tonghai, Peng Yeping, et al. Watershed-based morphological separation of wear debris chains for on-line ferrograph analysis[J]. Tribology Letters, 2014, 53(2): 411–420. doi: 10.1007/s11249-013-0280-1.
[200] Peng Yeping, Wu Tonghai, Wang Shuo, et al. Motion-blurred particle image restoration for on-line wear monitoring[J]. Sensors, 2015, 15(4): 8173–8191. doi: 10.3390/s150408173.
[201] Peng Yeping, Wu Tonghai, Wang Shuo, et al. A microfluidic device for three-dimensional wear debris imaging in online condition monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(8): 965–974. doi: 10.1177/1350650116684707.
[202] Wu H K, Kwok N M, Liu S C, et al. A prototype of on-line extraction and three-dimensional characterisation of wear particle features from video sequence[J]. Wear, 2016, 368–369: 314–325. doi: 10.1016/j.wear.2016.09.024.
[203] Wu Tonghai, Peng Yeping, Wang Shuo, et al. Morphological feature extraction based on multiview images for wear debris analysis in on-line fluid monitoring[J]. Tribology Transactions, 2017, 60(3): 408–418. doi: 10.1080/10402004.2016.1174325.
[204] Cao Wei, Chen Wei, Dong Guangneng, et al. Wear condition monitoring and working pattern recognition of piston rings and cylinder liners using on-line visual ferrograph[J]. Tribology Transactions, 2014, 57(4): 690–699. doi: 10.1080/10402004.2014.906693.
[205] Cao Wei, Dong Guangneng, Chen Wei, et al. Multisensor information integration for online wear condition monitoring of diesel engines[J]. Tribology International, 2015, 82: 68–77. doi: 10.1016/j.triboint.2014.09.020.
[206] Cao Wei, Dong Guangneng, Xie Youbai, et al. Prediction of wear trend of engines via on-line wear debris monitoring[J]. Tribology International, 2018, 120: 510–519. doi: 10.1016/j.triboint.2018.01.015.
[207] Yuan Wei, Dong Guangneng, Chin K S, et al. Tribological assessment of sliding pairs under damped harmonic excitation loading based on on-line monitoring methods[J]. Tribology International, 2016, 96: 225–236. doi: 10.1016/j.triboint.2015.12.044.
[208] Feng Song, Che Yitong, Mao Junhong, et al. Assessment of antiwear properties of lube oils using online visual ferrograph method[J]. Tribology Transactions, 2014, 57(2): 336–344. doi: 10.1080/10402004.2014.880537.
[209] Feng Song, Fan Bin, Mao Junhong, et al. Prediction on wear of a spur gearbox by on-line wear debris concentration monitoring[J]. Wear, 2015, 336–337: 1–8. doi: 10.1016/j.wear.2015.04.007.
[210] Kuo Wenfeng, Chiou Y C, Lee R T. Fundamental characteristics of wear particle deposition measurement by an improved on-line ferrographic analyzer[J]. Wear, 1997, 208(1-2): 42–49. doi: 10.1016/s0043-1648(96)07405-4.
[211] Miller J L, Kitaljevich D. In-line oil debris monitor for aircraft engine condition assessment[C]//2000 IEEE Aerospace Conference Proceedings, Big Sky, 2000, 6: 49–56. doi: 10.1109/AERO.2000.877882.
[212] Zhang Yali, Mao Junhong, Xie Youbai. Engine wear monitoring with OLVF[J]. Tribology Transactions, 2011, 54(2): 201–207. doi: 10.1080/10402004.2010.534838.
[213] Schomann L, Matz G, Röbken N, et al. OILPAS-online imaging of liquid-particle-suspensions - how to prevent a sudden engine breakdown[J]. SAE International Journal of Fuels and Lubricants, 2010, 3(2): 336–345. doi: 10.4271/2010-01-1528.
[214] Du Li, Zhe Jiang. On-line wear debris detection in lubricating oil for condition based health monitoring of rotary machinery[J]. Recent Patents on Electrical Engineeringe, 2011, 4(1): 1–9. doi: 10.2174/1874476111104010001.
[215] 张勇强. 干接触磨粒磨损研究[D]. 杭州: 浙江大学, 2018]. Zhang Yongqiang. On abrasive wear under dry contact[D]. Hangzhou: Zhejiang University, 2018
[216] Kumar P, Hirani H, Agrawal A K. Online condition monitoring of misaligned meshing gears using wear debris and oil quality sensors[J]. Industrial Lubrication and Tribology, 2018, 70(4): 645–655. doi: 10.1108/ilt-05-2016-0106.
[217] Sun Jiayi, Wang Liming, Li Jianfeng, et al. Online oil debris monitoring of rotating machinery: a detailed review of more than three decades[J]. Mechanical Systems and Signal Processing, 2021, 149: 107341. doi: 10.1016/j.ymssp.2020.107341.
[218] Fan Bin, Liu Yong, Zhang Chao, et al. A deposition rate-based index of debris concentration and its extraction method for online image visual ferrography[J]. Tribology Transactions, 2021, 64(6): 1035–1045. doi: 10.1080/10402004.2021.1961044.
[219] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533–536. doi: 10.1038/323533a0.
[220] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647.
[221] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521: 436–444. doi: 10.1038/nature14539.
[222] 吴晓. 基于油液分析的航空发动机磨损状态智能监测研究[D]. 南京: 南京航空航天大学, 2012]. Wu Xiao. Research on intelligent monitoring of aeroengine wear state based on oil analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012
[223] Shabalinskaya L A, Golovanov V V, Bubnova E S, et al. Tribodiagnostics of aviation reduction gears according to the stages of the surface fatigue wear for its units[J]. Journal of Friction and Wear, 2017, 38(4): 297–301. doi: 10.3103/S1068366617040122.
[224] Mohanty S, Hazra S, Paul S. Intelligent prediction of engine failure through computational image analysis of wear particle[J]. Engineering Failure Analysis, 2020, 116: 104731. doi: 10.1016/j.engfailanal.2020.104731.
[225] Myshkin N K, Kwon O K, Grigoriev A Y, et al. Classification of wear debris using a neural network[J]. Wear, 1997, 203–204: 658–662. doi: 10.1016/s0043-1648(96)07432-7.
[226] 顾大强, 邵军, 安琦. 磨损磨屑识别的BP算法及改进型研究[J]. 机械科学与技术, 1997, 16(1): 171–174]. doi: 10.13433/j.cnki.1003-8728.1997.01.036. Gu Daqiang, Shao Jun, An Qi. Analysis of BP algorithms for wear debris identification[J]. Mechanical Science and Technology, 1997, 16(1): 171–174 doi: 10.13433/j.cnki.1003-8728.1997.01.036
[227] Wang Hongbing, Yuan Fei, Gao Liyuan, et al. Wear debris classification and quantity and size calculation using convolutional neural network[C]//International Conference on Cyberspace Data and Intelligence, and Cyber-Living, Syndrome and Health. Singapore: Springer, 2019, 1137: 470-486. doi: 10.1007/978-981-15-1922-2_33.
[228] Wang S, Wu T H, Shao T, et al. Integrated model of BP neural network and CNN algorithm for automatic wear debris classification[J]. Wear, 2019, 426–427: 1761–1770. doi: 10.1016/j.wear.2018.12.087.
[229] Peng Yeping, Cai Junhao, Wu Tonghai, et al. A hybrid convolutional neural network for intelligent wear particle classification[J]. Tribology International, 2019, 138: 166–173. doi: 10.1016/j.triboint.2019.05.029.
[230] Peng Yeping, Cai Junhao, Wu Tonghai, et al. WP-DRnet: a novel wear particle detection and recognition network for automatic ferrograph image analysis[J]. Tribology International, 2020, 151: 106379. doi: 10.1016/j.triboint.2020.106379.
[231] Liu Xinliang, Cheng Liang, Chen Guoning, et al. Recognition of fatigue and severe sliding wear particles using a CNN model with multi-scale feature extractor[J]. Industrial Lubrication and Tribology, 2022, 74(7): 884–891. doi: 10.1108/ilt-03-2022-0088.
[232] Peng Peng, Wang Jiugen. NOSCNN: a robust method for fault diagnosis of RV reducer[J]. Measurement, 2019, 138: 652–658. doi: 10.1016/j.measurement.2019.02.080.
[233] Peng Peng, Wang Jiugen. FECNN: a promising model for wear particle recognition[J]. Wear, 2019, 432–433: 202968. doi: 10.1016/j.wear.2019.202968.
[234] Xie Fei, Wei Haijun. Research on controllable deep learning of multi-channel image coding technology in Ferrographic Image fault classification[J]. Tribology International, 2022, 173: 107656. doi: 10.1016/j.triboint.2022.107656.
[235] Wu Zhenfeng, Zuo Hongfu, Guo Lin. Debris micro-morphology analysis based on AI techniques[J]. Chinese Journal of Aeronautics, 2001, 14(1): 30–36.
[236] Gonçalves V, Almeida L F, Mathias M H. Wear particle classifier system based on an artificial neural network[J]. Strojniski Vestnik-Journal of Mechanical Engineering, 2010, 56: 277–281. doi: 10.5545/105_DOI_NOT_ASSIGNED.
[237] 邢敬华, 赵新泽, 严新平. 基于粗集理论的柴油机典型故障的磨粒识别[J]. 内燃机学报, 2005, 23(1): 92–95]. doi: 10.3321/j.issn:1000-0909.2005.01.016. Xing Jinghua, Zhao Xinze, Yan Xinping. Wear particles recognition of typical fault in diesel engine based on rough sets[J]. Transactions of CSICE, 2005, 23(1): 92–95 doi: 10.3321/j.issn:1000-0909.2005.01.016
[238] 徐晓健, 严新平, 盛晨兴, 等. 基于证据推理规则的船舶柴油机磨损类型辨识研究[J]. 摩擦学学报, 2017, 37(6): 814–822]. doi: 10.16078/j.tribology.2017.06.013. Xu Xiaojian, Yan Xinping, Sheng Chenxing, et al. Identification on wear mode for marine diesel engine based on evidential reasoning rule[J]. Tribology, 2017, 37(6): 814–822 doi: 10.16078/j.tribology.2017.06.013
[239] 任松, 徐雪茹, 欧阳汛, 等. 基于分层模糊支持向量机的油液磨粒自动识别[J]. 润滑与密封, 2019, 44(5): 1–8]. doi: 10.3969/j.issn.0254-0150.2019.05.001. Ren Song, Xu Xueru, Ouyang Xun, et al. Automatic recognition of wear debris in oil based on hierarchical fuzzy support vector machines[J]. Lubrication Engineering, 2019, 44(5): 1–8 doi: 10.3969/j.issn.0254-0150.2019.05.001
[240] Sperring T P, Nowell T J. SYCLOPS—a qualitative debris classification system developed for RAF early failure detection centres[J]. Tribology International, 2005, 38(10): 898–903. doi: 10.1016/j.triboint.2005.03.009.
[241] Fan Bin, Li Bo, Feng Song, et al. Modeling and experimental investigations on the relationship between wear debris concentration and wear rate in lubrication systems[J]. Tribology International, 2017, 109: 114–123. doi: 10.1016/j.triboint.2016.12.015.
[242] Li Qiong, Zhao Tingting, Zhang Lingchao, et al. Ferrography wear particles image recognition based on extreme learning machine[J]. Journal of Electrical and Computer Engineering, 2017, 2017: 3451358. doi: 10.1155/2017/3451358.
[243] Wen Long, Li Xinyu, Gao Liang, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990–5998. doi: 10.1109/TIE.2017.2774777.
[244] Wang Han, Zuo Hongfu, Liu Zhenzhen, et al. Online monitoring of oil wear debris image based on CNN[J]. Mechanics & Industry, 2022, 23: 9. doi: 10.1051/meca/2022006.