-
摘要:
针对31CrMoV9钢基体及其渗氮层,采用切向微动磨损试验机开展球/平面接触模式下的切向微动磨损试验. 探究了在法向载荷为20 N时,不同位移幅值下(D=5、10、50 μm)的切向微动损伤机制和损伤演变规律. 采用X射线衍射仪(XRD)对试样表层物相进行分析,扫描电子显微镜(SEM)和白光干涉仪对试样磨损区进行形貌表征,能谱仪(EDS)和电子探针显微分析仪(EPMA)进行化学元素分析. 结果表明:离子渗氮处理后在基体表面形成了化合物层和扩散层,显著提高了表面硬度. 在法向载荷Fn=20 N时,随着微动位移幅值的增大,31CrMoV9基体及其渗氮层的微动运行区均由部分滑移区逐渐向混合、完全滑移区转变,磨损体积增大,磨损更加严重,稳定阶段的摩擦系数逐渐增大. 在部分滑移区和完全滑移区,渗氮层较基体在稳定阶段的摩擦系数更小,而在混合区基体的摩擦系数更小. 在混合区和完全滑移区时,基体及渗氮层的损伤机制均为剥层、磨粒磨损和氧化磨损. 离子渗氮生成的化合物层能提高材料的抗微动磨损性能,在D=10和50 μm时,磨损率分别降低了约38.5%和70.2%. 研究结果可为轨道交通等领域结构件的选材和抗微动磨损设计提供参考.
Abstract:Fretting wear widely exists in railway transportation. Surface treatment technology has a significant effect on enhancing the safety and reliability of locomotive operation by improving the surface wear properties of its components. A compound layer was produced on the surface of 31CrMoV9 steel sample via plasma nitriding. A tangential fretting wear test was conducted on 31CrMoV9 steel and its nitrided layer utilizing a highly accurate fretting tester in ball/flat contact mode. The fretting mechanism and damage evolution of the samples were investigated at different displacement amplitudes (D=5, 10, 50 μm) with a normal load of 20 N. In order to identify the resulting phases such as ferrite phase and combination phase, X-ray diffractometer (XRD) was conducted to examine the surface layer of distinctive samples. Morphology of the worn area was characterized by scanning electron microscopy (SEM) and white light interferometer. The chemical elements were analyzed by energy dispersive spectroscopy (EDS) and electron probe microanalyzer (EPMA). The results demonstrated that after plasma nitriding treatment, the nitrided sample developed a compound layer, diffusion layer and substrate in the direction of depth, resulting in a significant enhancement of the surface hardness. The near-surface hardness of nitrided layer was approximately 560.7 HV0.3, which was an increase of 112.7% compared to the substrate’s near-surface hardness of approximately 263.6 HV0.3, and the depth of nitriding influence layer was approximately 1.5 mm. As the fretting displacement amplitude gradually increased at Fn=20 N, the fretting regime of 31CrMoV9 substrate and nitrided layer changed from partial slip regime to mixed regime, slip regime, ultimately leading to an increase in the wear volume and the friction coefficient during the stabilization period. The friction coefficient of the substrate was smaller compared with the nitrided layer in the mixed regime, which was opposite to the partial slip regime and slip regime, the observed difference was attributed to the substrate sample formed a thicker debris layer than the nitrided sample in the mixed regime, which played a lubricated role. The wear mechanism of the substrate and nitrided layer were delamination, abrasive wear and oxidation wear in the mixed regime and slip regime. The compound layer generated by plasma nitriding improved the fretting wear resistance of the material, and the volume wear rate reduced by about 38.5% (D=10 μm) and 70.2% (D=50 μm). The research results provided a reference for the material selection of structural components and designing anti-fretting wear measures in the railway transportation industry and other fields.
-
Keywords:
- surface engineering /
- 31CrMoV9 /
- plasma nitriding /
- fretting wear /
- damage mechanism
-
自润滑关节轴承主要由内圈、外圈和自润滑衬垫材料组成,因其结构紧凑、承载能力强和免维护等优点,被广泛应用于航空航天以及精密机械等高端装备领域[1-3]. PTFE纤维织物作为自润滑衬垫材料的1种,常用PTFE纤维与容易粘接的Kevlar纤维混合编织成薄层织物与酚醛树脂复合而成. 使得织物兼具PTFE的高润滑性能和Kevlar的优良力学性能[4-5]. 然而在摩擦过程中,高温和高速工况条件,摩擦热的大量累积,导致复合材料的整体稳定性大幅下降[6-8]. 因此,研究温度对复合材料磨损机制和行为的影响,对提高球面滑动轴承的自润滑性能和磨损寿命具有重要意义. Wang等[9]通过研究发现摩擦温度的升高导致PTFE复合材料之间的黏着磨损. 齐慧敏等[10]开展了宽温域范围内的摩擦磨损试验,结果表明摩擦过程中PTFE转移至对偶表面,发生摩擦氧化及螯合反应,显著影响了摩擦膜的形成. 为了提高织物复合材料的热稳定性,研究人员通过表面改性技术提高纤维机械互锁和化学结合来增强界面黏附性[11-13]. 微量填料的掺入使聚合物复合材料具有更好的力学和摩擦学性能[14]. 赵鑫等[15]将改性玄武岩颗粒和氟化石墨构成的二元复合填料引入PTFE/Nomex混纺织物,极大增强了复合材料的抗磨性能和热稳定性能. 王壮等[16]在PTFE基体中添加CaF2微米颗粒明显提高了PTFE的耐磨性能. 除温度外,复合材料的摩擦学性能还受到载荷和速度的影响. 负载会造成树脂的应力集中,导致纤维的挤压和断裂[17-20]. 速度会产生摩擦热的快速积累,造成树脂的软化,使得树脂基体的承载能力大幅下降,纤维被大量挤出,从而造成剧烈磨损[21].
由于芳纶纤维对PTFE和树脂的容纳性良好,一般采用斜纹或缎纹的编织形式对两者进行混编,得到摩擦磨损性能优异的织物复合材料[22-24]. 为了研究温度对高速重载条件下复合材料摩擦磨损性能的影响,本试验中将制备的PTFE/Kevlar斜纹织物复合材料进行不同温度下的摩擦磨损试验. 试验表明,在75 ℃条件下,织物复合材料表现出最好的摩擦学性能. 随着温度的升高,磨损机制由磨粒磨损转变为黏着磨损,复合材料的磨损行为主要与PTFE纤维的断裂形式有关. 揭示不同温度条件下磨损机制的转变,对提高织物复合材料的摩擦学性能、材料改性提供理论参考.
1. 试验部分
1.1 材料制备
PTFE/Kevlar纤维织物复合材料由PTFE纤维(细度:400 D)和Kevlar纤维(细度:200 D)混合编织(斜纹结构,织物厚度0.38±0.02 mm,面密度1.45 g/m3),用于增强的Kevlar纤维采购于美国杜邦公司. 织物粘接剂为有机硅改性酚醛树脂,由上海新光树脂厂提供. 粘接前将织物浸泡在丙酮试剂中12 h,之后将织物浸泡在树脂中,使用超声仪器震荡并搅拌,去除气泡. 将处理过的织物放置到热滚压机中,进行预固化,预固化过的复合材料如图1所示. 将固化过的织物粘接面均匀涂抹树脂与GCr15基底相结合,放置真空热压机中,在180 ℃和0.8 MPa条件下热压2 h. 试样剥离强度为0.33~0.36 N/m. 以上制备过程均在中科院兰州化学物理研究所进行. 试验中对偶件采用直径5 mm和长度60 mm的GCr15圆柱体钢销,表面粗糙度为0.16 μm,硬度为62HRC,将销底部倒半径为1 mm的圆角.
1.2 试验方法
使用HL-R7000重载往复摩擦磨损试验仪,如图2所示,对PTFE/Kevlar织物复合材料进行摩擦磨损试验. 该试验仪采用销盘式结构,使用夹持装置将GCr15圆柱体钢销固定,加载装置施加载荷,通过偏心轮的转动实现往复运动,往复距离6 mm. 在本研究中,滑动方向始终与PTFE纤维束垂直. 通过往复装置底部的加热装置与热电偶的协同作用,达到试验过程中所需温度条件.
本研究中,根据杨育林等[25]开展的不同环境温度下的摩擦磨损试验以及自润滑织物复合材料的常用工况条件. 本试验选取温度(25、50、75、100和150 ℃)、载荷(20、30和40 MPa)以及频率(6、8和10 Hz)为试验参数,对材料进行每组10 h的摩擦磨损试验. 每次测试前,摩擦面用丙酮试剂进行擦拭. 试验过程中实时监测记录摩擦系数. 每次试验结束时,使用EC-770S涂镀层测厚仪测量材料的厚度,计算出磨损体积,根据磨损体积得出每组试验的磨损率数据. 为保证试验的可重复性和可靠性,试验均重复5次,取平均值. 使用JSM-IT100型扫描电子显微镜(SEM)对摩擦面和磨屑进行表征,X射线能谱仪(Xplore)进行表面元素分析.
2. 结果与讨论
2.1 摩擦磨损试验
图3所示为不同温度下的摩擦系数和磨损率. 复合材料摩擦系数和磨损率随着温度的升高,先降低后升高. 25 ℃时,摩擦系数均值为0.073,标准差为0.017 2. 当温度达到75 ℃时,摩擦系数和磨损率达到最小值,分别为0.039和5.98×10−15 m3/(N·m),摩擦系数波动较为稳定,标准差为0.005 3. 在温度升高至100 ℃后,摩擦系数明显增大且剧烈波动. 150 ℃时摩擦系数均值高达0.117,标准差高达0.024 5,磨损率也急剧升高. 这一现象说明高温持续作用,会引起树脂黏附剂氧化分解,导致复合材料的承载能力和耐磨性能下降[26-27].
图4所示为不同温度和频率下的摩擦系数和磨损率. 25 ℃时,随着频率的增加,复合材料摩擦系数和磨损率逐渐降低. 频率对纤维性能的影响导致材料的摩擦学行为较为复杂[28],并且频率的改变对于复合材料的影响可以定义为滑动界面处温度对材料的影响,而材料本身为热的不良导体[2]. 当频率增大至10 Hz时,材料摩擦表面温度急剧攀升,相应地,材料摩擦系数和磨损率呈现减小趋势,如图4所示. 当温度开始升高时,摩擦系数和磨损率先降低后升高并在75 ℃时达到最小值. 综上所述,温度对于材料摩擦磨损性能的影响更为直接. 50~75 ℃时,温度的作用使得树脂黏附剂软化,在摩擦过程被对偶抛光,造成材料的摩擦系数降低[29]. 但温度升高至100 ℃以上,会导致材料承载能力下降,耐磨性能降低.
图5所示为不同温度和载荷下的摩擦系数和磨损率,随着温度的增加,材料摩擦系数和磨损率均保持先减小后增大的规律. 但相同温度下,载荷为30 MPa时,材料摩擦系数和磨损率最小. 载荷的增大使得少量PTFE脱粘[30],在往复运动时,均匀铺展到摩擦表面,起到减摩的效果. 当载荷增至40 MPa,酚醛树脂因其较弱的热传导能力,加之高温环境中的材料受到严重的压缩和剪切作用,诱导更多摩擦热的产生[31],使得树脂基体的承载能力大幅下降,失去保护的纤维被金属切断,产生严重的磨损. 所以,在温度与载荷的协同作用下,温度对材料力学性能产生影响,载荷可以影响纤维的挤出形式. 载荷为30 MPa时,在磨损过程中可以起到适当的减摩作用.
2.2 磨损机制
利用扫描电镜(SEM)对材料磨损面、磨屑和转移膜进行观察. 图6所示为不同温度下的磨损形貌的SEM照片和EDS结果. 25 ℃时[图6(a)],编织结点处出现局部应力集中现象,磨损表面出现明显裂纹,材料表面F元素质量分数约为26.5%,摩擦表面的PTFE纤维被滑动挤出. 随着温度升高至75 ℃[图6(b)],材料摩擦磨损性能最好(图3),磨损表面F元素质量分数达到最大值34.2%. 相较于图6(a),磨损表面的裂纹明显减少,PTFE纤维在热应力的作用下被挤压并且捻碎,形成磨屑,沿着滑动的方向产生塑性流动,从而抑制了裂纹的产生,使得复合材料能够保持良好的力学稳定性和耐磨性能.
当温度升高至150 ℃ 时[图6(c)],材料表面极为平整,无明显的纤维束. 过高的温度导致材料的结构稳定性急剧降低,PTFE纤维被切断和拔出,形成大片的剥落坑. 磨损表面F元素质量分数减少至13.2%,O元素与Fe元素含量明显增大. 综上所述,复合材料在摩擦过程中摩擦学性能主要与PTFE的磨损行为有关,随着温度的改变,PTFE纤维的挤出方式由滑动挤出转变为切断和拔出.
图7所示为未磨损表面和不同温度下磨损表面的F元素分布. 分析表明,PTFE纤维在初始状态主要分布在编织结点处. 在不同温度下进行摩擦磨损试验后,25 ℃时[图7(b)],F元素主要处于分散团聚的状态. 由于树脂韧性较差,在编织结点处被冲击,发生断裂,PTFE纤维被附带着剪切挤出. 75 ℃时[图7(c)],温度的作用使得PTFE纤维表面的树脂软化,黏附到对偶表面,PTFE逐渐向四周流动,使得编织结点处F元素均匀分布,更多的PTFE纤维被挤出,参与到摩擦过程中. 当温度升高至150 ℃时[图7(d)],F元素分布明显减少,大多直接分布在编织结点处. PTFE被直接挤压切断,这也导致转移膜的生成率降低.
图8所示为不同温度下磨屑表面微观形貌的SEM照片. 温度在25~75 ℃时[图8(a~b)],磨屑呈现出块状,对比发现,在75 ℃时磨屑的形状尺寸更为细小. 高温作用使得树脂黏附剂软化,粘连在对偶销表面,减少了PTFE纤维直接被金属表面的凸峰刮擦的情况,使得在高温中软化的PTFE纤维在外力作用下被均匀碾碎,形成较小的颗粒状磨屑. 温度升高至150 ℃时[图8(c)],磨屑有明显被扯断的痕迹,过高的温度导致纤维发生剥落,最终形成磨屑挤出到磨损表面.
图9所示为不同温度下转移膜微观形貌的SEM照片. 25 ℃时[图9(a)],对偶销表面转移膜与金属结合能力及热稳定性较差,摩擦过程中,局部高温会造成转移膜剥落,造成转移膜的均匀性较差. 随着温度升高至75 ℃ [图9(b)],转移膜均匀性和稳定性较好,表面出现少量剥落坑,但剥落坑底部并无明显的机械加工痕迹. 这是因为温度升高,PTFE的黏弹性明显增大[32],磨损初期,由于温度作用,软化的树脂和PTFE被挤压,转移到对偶销表面,形成1层较薄的基层转移膜,填充到金属销表面的沟槽,避免了之后PTFE在挤出时被刮擦. 随着试验的进行,更多的PTFE粘连在基层转移膜表面,形成了质地均匀且较为稳定的双层转移膜. 当温度升高至150 ℃[图9(c)],对偶销表面的转移膜呈现堆积状. 过高的温度对材料的稳定性造成了破坏,树脂无法对PTFE纤维起到保护的功能,多数的PTFE纤维被直接滑动拔出,堆叠形成非均匀的局部层片状转移膜,从而造成在此条件下的非正常磨损.
图10所示为不同温度下的磨损机制示意图,如图10(a)所示,复合材料接触界面处的金属销表面存在着粗糙的凹坑[33],在室温时,材料表面编织结点处的PTFE纤维由于其剪切强度较低[34],会发生断裂,从而被碾碎形成磨粒. 由于PTFE的不粘性,金属销表面难以形成均匀且稳定的转移膜. 此时材料的磨损机制以磨粒磨损为主.
当温度升高至75 ℃[图10(b)],金属销表面温度较高,在摩擦过程中,树脂受热发生软化,黏附在金属销表面,使其表面凹坑得到填充. PTFE纤维因其优良的化学稳定性和性质较软这一特性,促使PTFE纤维充分被捻碎,形成润滑层,起到减摩作用,防止Kevlar纤维断裂. 此外,外部高温作用下PTFE纤维软化,粘连到对偶销表面,与黏附在表面的树脂结合,形成均匀且稳定的转移膜,此时磨损机制主要为轻微黏着磨损. 当温度达到150 ℃[图10(c)],由于PTFE纤维的机械性能随着温度的升高而降低[35],材料整体热量快速积累,结构稳定性遭到破坏,树脂受热发生氧化分解,PTFE纤维被大量拔出和切断,挤出到磨损面,无法在材料表面发生塑性流动. Kevlar纤维直接与金属销接触,Kevlar纤维的力学性能随温度的升高而降低[36],在高温作用下发生断裂,材料强度遭到破坏,产生剧烈磨损,对偶销表面生成的转移膜由于温度较高,产生热疲劳剥落. 此时的磨损机制主要为严重的黏着磨损.
综上所述,随着环境温度从25 ℃升高至150 ℃,复合材料与对偶销之间的磨损机制从磨粒磨损转变为轻度黏着磨损,再转变为严重黏着磨损并伴随着热复合性疲劳剥落. 相应地,PTFE的损伤行为由滑动剪切挤出到粘连,再到纤维的拔出切断与转移膜的消耗以及Kevlar的断裂.
3. 结论
a. 载荷与频率一定时,当温度从25 ℃增加到150 ℃,PTFE/Kevlar织物复合材料摩擦系数和磨损率先减小后增大. 该材料在摩擦温度为75 ℃时,表现出极佳的摩擦磨损性能,摩擦系数约为0.039,超过100 ℃时,摩擦系数波动较大,材料发生剧烈磨损.
b. 温度对材料摩擦学特性的影响远大于频率和载荷. 在载荷与频率的共同作用下,当温度为75 ℃时,PTFE纤维塑性流动现象极其明显,磨损表面F元素质量分数占比高达34.2%,此时摩擦系数波动较为稳定,标准差低至0.005 3. 受温度的影响,PTFE纤维断裂行为由滑动剪切挤出逐渐转变为纤维拔出和切断.
c. 随着温度的升高,复合材料的磨损机制由磨粒磨损转变为轻微黏着磨损,再转变为严重的黏着磨损. 为保证自润滑材料的抗磨损性能,摩擦温度在50~75 ℃时,可以使复合材料长期维持在轻微黏着磨损阶段,提高了材料的自润滑性能和抗磨性能. 当摩擦温度超过100 ℃时,材料黏着磨损和疲劳磨损加剧,极易产生非正常磨损.
-
表 1 GCr15钢和31CrMoV9钢的化学成分
Table 1 Chemical composition of GCr15 steel and 31CrMoV9 steel
Materials Mass fraction/% C Si Mn Cr Mo V Ni Fe GCr15 0.95 0.25 0.30 1.50 − − 0.20 Bal 31CrMoV9 0.27~0.34 ≤0.40 0.40~0.70 2.30~2.70 0.15~0.25 0.10~0.20 − Bal -
[1] 王耀武, 张雅芹, 王晓颖. 31CrMoV9钢固溶双细化工艺研究[J]. 热处理, 2013, 28(6): 50–52,53]. doi: 10.3969/j.issn.1008-1690.2013.06.016. Wang Yaowu, Zhang Yaqin, Wang Xiaoying. Solution-double-refinement treating of 31CrMoV9 steel[J]. Heat Treatment, 2013, 28(6): 50–52,53 doi: 10.3969/j.issn.1008-1690.2013.06.016
[2] 黄星, 蒲锐. 31CrMoV9钢热处理工艺研究[J]. 机车车辆工艺, 2010, (2): 16–17,46]. doi: 10.14032/j.issn.1007-6034.2010.02.002. Huang Xing, Pu Rui. Research on the heat treatment process of 31CrMoV9 steel[J]. Locomotive & Rolling Stock Technology, 2010, (2): 16–17,46 doi: 10.14032/j.issn.1007-6034.2010.02.002
[3] 郁俐, 涂小龙, 陈云祥. 31CrMoV9钢深层渗氮工艺研究[J]. 铸造技术, 2017, 38(3): 573–576]. doi: 10.16410/j.issn1000-8365.2017.03.023. Yu Li, Tu Xiaolong, Chen Yunxiang. Study of deep nitriding process for 31CrMoV9 steel[J]. Foundry Technology, 2017, 38(3): 573–576 doi: 10.16410/j.issn1000-8365.2017.03.023
[4] 朱旻昊, 蔡振兵, 周仲荣. 微动磨损理论[M]. 北京: 科学出版社, 2021]. Zhu Minhao, Cai Zhenbing, Zhou Zhongrong. Fretting wear theory[M]. Beijing: Science Press, 2021
[5] 唐攀, 米雪, 沈平川, 等. 位移幅值对690合金管/405不锈钢块切向微动磨损特性的影响[J]. 摩擦学学报, 2020, 40(6): 754–761]. doi: 10.16078/j.tribology.2020024. Tang Pan, Mi Xue, Shen Pingchuan, et al. Effect of displacement on tangential fretting wear characteristics of 690 alloy tube/405 stainless steel plate[J]. Tribology, 2020, 40(6): 754–761 doi: 10.16078/j.tribology.2020024
[6] 朱旻昊, 徐进, 周仲荣. 抗微动损伤的表面工程设计[J]. 中国表面工程, 2007, 20(6): 5–10]. doi: 10.3321/j.issn:1007-9289.2007.06.002. Zhu Minhao, Xu Jin, Zhou Zhongrong. Alleviating fretting damages through surface engineering design[J]. China Surface Engineering, 2007, 20(6): 5–10 doi: 10.3321/j.issn:1007-9289.2007.06.002
[7] 罗军, 郑健峰, 莫继良, 等. 钢表面多元共渗改性层的微动磨损行为研究[J]. 中国表面工程, 2009, 22(2): 15–19]. Luo Jun, Zheng Jianfeng, Mo Jiliang, et al. Study on fretting wear behavior of steel modified by gas multi-element penetration at low temperature[J]. China Surface Engineering, 2009, 22(2): 15–19
[8] Olzon-Dionysio M, Campos M, Kapp M, et al. Influences of plasma nitriding edge effect on properties of 316L stainless steel[J]. Surface and Coatings Technology, 2010, 204(21-22): 3623–3628. doi: 10.1016/j.surfcoat.2010.04.034.
[9] 梁泓彬, 李长生, 王培, 等. 离子渗氮温度对42CrMo钢组织及摩擦磨损行为的影响[J]. 材料保护, 2019, 52(6): 39–44]. doi: 10.16577/j.cnki.42-1215/tb.2019.06.007. Liang Hongbin, Li Changsheng, Wang Pei, et al. Effect of ion nitriding temperature on the microstructure and tribological behavior of 42CrMo steel[J]. Materials Protection, 2019, 52(6): 39–44 doi: 10.16577/j.cnki.42-1215/tb.2019.06.007
[10] Çomakli O, Yetim A F, Karaca B, et al. Effect of nitrogen amount on tribological behavior of plasma nitrided 31CrMoV9 steel[J]. Surface Review and Letters, 2019, 26(7): 1850217. doi: 10.1142/S0218625X18502177.
[11] Dayanç A, Karaca B, Kumruoglu L C. Improvement of tribological properties of steel camshaft by plasma nitriding[J]. Acta Physica Polonica A, 2019, 135(4): 786–792. doi: 10.12693/APhysPolA.135.786.
[12] Conci M D, Bozzi A C, Franco A R. Effect of plasma nitriding potential on tribological behaviour of AISI D2 cold-worked tool steel[J]. Wear, 2014, 317(1-2): 188–193. doi: 10.1016/j.wear.2014.05.012.
[13] Emami M, Ghasemi H M, Rassizadehghani J. High temperature tribological behaviour of 31CrMoV9 gas nitrided steel[J]. Surface Engineering, 2010, 26(3): 168–172. doi: 10.1179/174329409x 397741.
[14] 李少雨, 张阳, 朱建鑫, 等. 31CrMoV9热处理工艺研究[J]. 大型铸锻件, 2019, (2): 37–39]. doi: 10.14147/j.cnki.51-1396/tg.2019.02.013. Li Shaoyu, Zhang Yang, Zhu Jianxin, et al. Research on heat treatment process of 31CrMoV9 steel[J]. Heavy Castings and Forgings, 2019, (2): 37–39 doi: 10.14147/j.cnki.51-1396/tg.2019.02.013
[15] 王飞宇, 张忠和, 张尔康, 等. 31CrMoV9钢的离子渗氮[J]. 热处理, 2017, 32(5): 48–51]. doi: 10.3969/j.issn.1008-1690.2017.05.012. Wang Feiyu, Zhang Zhonghe, Zhang Erkang, et al. Ion nitriding of 31CrMoV9 steel[J]. Heat Treatment, 2017, 32(5): 48–51 doi: 10.3969/j.issn.1008-1690.2017.05.012
[16] Ali M M, Raman S G S, Pathak S D, et al. Influence of plasma nitriding on fretting wear behaviour of Ti–6Al–4V[J]. Tribology International, 2010, 43(1-2): 152–160. doi: 10.1016/j.triboint.2009.05.020.
[17] Prakash N A, Bennett C J. The effect of plasma nitriding and post oxidation on fretting wear behaviour of a high strength alloy steel[J]. Journal of Physics: Conference Series, 2017, 843: 012079. doi: 10.1088/1742-6596/843/1/012079.
[18] 屈盛官, 王光宏, 李文龙, 等. 高性能渗氮钢微动磨损性能研究[J]. 摩擦学学报, 2012, 32(5): 486–492]. doi: 10.16078/j.tribology.2012.05.009. Qu Shengguan, Wang Guanghong, Li Wenlong, et al. Fretting wear of a high-performance plasma nitrided steel[J]. Tribology, 2012, 32(5): 486–492 doi: 10.16078/j.tribology.2012.05.009
[19] 覃旭娟, 卢俊强, 郭相龙, 等. 离子渗氮对AISI304L不锈钢磨损性能的影响[J]. 金属热处理, 2016, 41(1): 161–165]. doi: 10.13251/j.issn.0254-6051.2016.01.034. Qin Xujuan, Lu Junqiang, Guo Xianglong, et al. Effect of plasma nitriding on wear property of AISI 304L stainless steel[J]. Heat Treatment of Metals, 2016, 41(1): 161–165 doi: 10.13251/j.issn.0254-6051.2016.01.034
[20] 贺继樊, 任岩平, 白崇成, 等. 干态及润滑工况下离子氮化35CrMo钢微动磨损机理研究[J]. 摩擦学学报, 2023, 43(1): 18–29]. doi: 10.16078/j.tribology.2021243. He Jifan, Ren Yanping, Bai Chongcheng, et al. Fretting wear mechanism of plasma nitride 35CrMo steel under dry and lubricated conditions[J]. Tribology, 2023, 43(1): 18–29 doi: 10.16078/j.tribology.2021243
[21] Tang Pan, Mi Xue, Zhang Jun, et al. Evolution of wear damage in 690 alloy tube mated with 405 stainless steel plate due to fretting conditions[J]. Tribology International, 2021, 163: 107177. doi: 10.1016/j.triboint.2021.107177.
[22] Zhou Z R, Nakazawa K, Zhu M H, et al. Progress in fretting maps[J]. Tribology International, 2006, 39(10): 1068–1073. doi: 10.1016/j.triboint.2006.02.001.
[23] 朱旻昊. 径向与复合微动的运行和损伤机理研究[D]. 成都: 西南交通大学, 2001]. Zhu Minhao. Investigations on the running and damage mechanisms of radial and composite fretting[D]. Chengdu: Southwest Jiaotong University, 2001
[24] He Jifan, Peng Jinfang, Ren Yanping, et al. Study on improving fretting wear properties of AISI 4135 steel via diverse surface modifications under grease lubrication[J]. Wear, 2022, 490–491: 204210. doi: 10.1016/j.wear.2021.204210.
[25] 王梦婕, 彭金方, 庄文华, 等. 碳纤维切向微动磨损特性研究[J]. 摩擦学学报, 2019, 39(3): 330–339]. doi: 10.16078/j.tribology.2018168. Wang Mengjie, Peng Jinfang, Zhuang Wenhua, et al. Fretting wear damage characteristics of carbon fiber[J]. Tribology, 2019, 39(3): 330–339 doi: 10.16078/j.tribology.2018168
[26] He Jifan, Cai Zhenbing, Ren Yanping, et al. Optimization of several surface treatment processes for alleviating fretting damage of a locking pin[J]. Friction, 2022, 10(8): 1217–1233. doi: 10.1007/s40544-021-0526-0.
[27] 米雪, 唐攀, 沈平川, 等. 690合金管在不同法向载荷下的切向微动磨损性能研究[J]. 表面技术, 2020, 49(11): 191–197]. doi: 10.16490/j.cnki.issn.1001-3660.2020.11.021. Mi Xue, Tang Pan, Shen Pingchuan, et al. Tangential fretting wear characteristics of 690 alloy tubes under different normal force[J]. Surface Technology, 2020, 49(11): 191–197 doi: 10.16490/j.cnki.issn.1001-3660.2020.11.021
[28] Yue T Y, Wahab M A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International, 2017, 107: 274–282. doi: 10.1016/j.triboint.2016.11.044.
[29] Zhang Yusheng, Ming Hongliang, Lai Jiang, et al. Fretting wear behaviour of Zr alloy cladding tube under partial slip regime with different duration in simulated primary water of PWR[J]. Applied Surface Science, 2022, 605: 154861. doi: 10.1016/j.apsusc.2022.154861.