ISSN   1004-0595

CN  62-1224/O4

高级检索

超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究

尹美贵, 张磊, 尹海燕

尹美贵, 张磊, 尹海燕. 超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究[J]. 摩擦学学报(中英文), 2024, 44(7): 985−995. DOI: 10.16078/j.tribology.2023052
引用本文: 尹美贵, 张磊, 尹海燕. 超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究[J]. 摩擦学学报(中英文), 2024, 44(7): 985−995. DOI: 10.16078/j.tribology.2023052
YIN Meigui, ZHANG Lei, YIN Haiyan. Influence of Ultrasonic Surface Rolling on Impact-Shear Wear Behavior of Ni Base 690 Alloy[J]. Tribology, 2024, 44(7): 985−995. DOI: 10.16078/j.tribology.2023052
Citation: YIN Meigui, ZHANG Lei, YIN Haiyan. Influence of Ultrasonic Surface Rolling on Impact-Shear Wear Behavior of Ni Base 690 Alloy[J]. Tribology, 2024, 44(7): 985−995. DOI: 10.16078/j.tribology.2023052
尹美贵, 张磊, 尹海燕. 超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究[J]. 摩擦学学报(中英文), 2024, 44(7): 985−995. CSTR: 32261.14.j.tribology.2023052
引用本文: 尹美贵, 张磊, 尹海燕. 超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究[J]. 摩擦学学报(中英文), 2024, 44(7): 985−995. CSTR: 32261.14.j.tribology.2023052
YIN Meigui, ZHANG Lei, YIN Haiyan. Influence of Ultrasonic Surface Rolling on Impact-Shear Wear Behavior of Ni Base 690 Alloy[J]. Tribology, 2024, 44(7): 985−995. CSTR: 32261.14.j.tribology.2023052
Citation: YIN Meigui, ZHANG Lei, YIN Haiyan. Influence of Ultrasonic Surface Rolling on Impact-Shear Wear Behavior of Ni Base 690 Alloy[J]. Tribology, 2024, 44(7): 985−995. CSTR: 32261.14.j.tribology.2023052

超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究

基金项目: 国家自然科学基金项目(52105201)、浙江省自然科学基金项目( LQ22E050010)和温州市基础性工业科技项目(2021G0003)资助.
详细信息
  • 中图分类号: TH117.2

Influence of Ultrasonic Surface Rolling on Impact-Shear Wear Behavior of Ni Base 690 Alloy

Funds: This project was supported by National Natural Science Foundation of China (52105201), Natural Science Foundation of Zhejiang Province (LQ22E050010) and Science and Technology Project of Wenzhou City (2021G0003).
More Information
  • 摘要:

    通过超声表面滚压技术(USRP)改善镍基690合金表面的粗糙度和硬化层,并探究该工艺对其冲-切磨损行为的影响机理. 首先,采用USRP对镍基690合金表面进行强化处理,然后,基于可控能量式冲-切磨损试验装置,探究镍基690合金强化前后在不同冲-切变量下其磨损界面的动态响应行为与损伤机理. 得出了USRP工艺可有效降低磨损界面的摩擦力和摩擦系数,降低冲切能耗,进而减少材料的磨损程度,此外,冲击或切向滑动速度的增加均会导致磨损界面所受冲击力和摩擦力的增大,并降低动能吸收率.

    Abstract:

    Ultrasonic surface rolling process (USRP) was applied to improve the surface roughness and microhardness of Inconel 690 alloy. Moreover, the effect of this process on the impact-sliding wear behavior of Inconel 690 alloy was investigated. First, Inconel 690 alloy was selected as the test material, and the size specifications of the specimen were 10 mm×10 mm×5 mm cuboids. The chemical composition of Inconel 690 alloy was Ni 59.48%, Cr 29.5%, Al 0.36%, C 0.022%, Si 0.38%, Mn 0.42%, P 0.012% and S 0.025%. Before ultrasonic surface rolling, different specifications (800, 1000, 1200 and 1500 Cw) of silicon nitride sandpaper were used sequentially to polish the required reinforced surface, and then 0.5 μm diamond grinding paste was used to polish the polished surface until the mirror surface; then absolute ethanol was used to wash in an ultrasonic cleaner for 15 minutes, and finally the sample surface was dried with compressed air. the Inconel 690 alloy’s surface was treated using USRP under specific process parameters. Second, on the basis of an energy control impact-sliding wear test rig, the impact block hit the specimen in motion at a set initial speed (vi) in the impact direction. Among them, the mass (m) of the normal impact block was 800 g, and the total number of punching cycles (n) per test was 10 000. Immediately afterwards, an optical microscope was used to observe the shape and morphology of the resulting wear marks. The alloy’s surface dynamic mechanical response behavior and damage mechanism were examined under different impact or sliding velocities. The rebound velocity of Inconel 690 alloy under the same test conditions was significantly improved due to the refinement of the surface grain, smoother surface, and reduced tangential friction during punching and shearing wear, and the maximum increase of rebound speed was 30.9%, which occurred when the impact velocity was 30 mm/s. At an impact velocity of 30 mm/s and a tangential velocity of 60 mm/s, the friction coefficients of the untreated specimen and the USRP-treated specimen were approximately 0.23 and 0.17, respectively. Under the same impact-sliding wear conditions, the friction coefficients of USRP-treated specimens was smaller than that of untreated specimens. With the increase of impact velocity, the friction coefficient of the surface decreased, and the friction coefficient treated by USRP was also reduced compared with the friction coefficient of the untreated surface, and the friction coefficient of the reinforced Inconel 690 alloy surface decreased by 26.09%. USRP could effectively decrease the friction force, friction coefficient and impact-sliding dissipated energy during the impact-sliding wear process, thereby reducing the wear degree. In addition, the increased impact or sliding velocity increased the friction force and decreased the dissipated rate of impact kinetic energy.

  • 图  1   超声表面滚压工艺过程

    Figure  1.   Ultrasonic surface rolling process

    图  2   冲-切磨损行为示意图

    Figure  2.   Schematic diagram of impact-sliding wear behavior

    图  3   冲击速度变化情况(n=600, vs = 60 mm/s):(a)未经强化处理;(b) 经USRP处理

    Figure  3.   Impact velocity variations (n=600, vs = 60 mm/s): (a) untreated; (b) USRP treated

    图  4   冲击动能变化曲线 (n=600, vi = 60 mm/s):(a)未经强化处理;(b)经USRP处理

    Figure  4.   Impact kinetic energy change curve (n=600, vi = 60 mm/s): (a) untreated; (b) USRP treated

    图  5   动能吸收率(n=600):(a) vi = 60 mm/s;(b) vs = 60 mm/s

    Figure  5.   Kinetic absorption energy rate (n=600): (a) vi = 60 mm/s; (b) vs = 60 mm/s

    图  6   磨损界面所受的冲击力及最大冲击力 (n=600):(a)未经强化处理,vs = 60 mm/s;(b)经USRP处理,vs = 60 mm/s;(c) vs = 60 mm/s

    Figure  6.   The impact force and maximum impact force of the wear interface (n=600): (a) untreated, vs = 60 mm/s; (b) USRP treated, vs = 60 mm/s; (c) vs = 60 mm/s

    图  7   磨损界面所受摩擦力(n=600):(a)未经强化处理,vs = 60 mm/s;(b)经USRP处理,vs = 60 mm/s;(c)未经强化处理,vi = 60 mm/s; (d)经USRP处理,vi = 60 mm/s

    Figure  7.   The friction force of the wear interface (n=600): (a) untreated, vs = 60 mm/s; (b) USRP treated, vs = 60 mm/s; (c) untreated, vi = 60 mm/s; (d) USRP treated, vi = 60 mm/s

    图  8   磨损界面所受的最大摩擦力(n=600)

    Figure  8.   The maximum friction force on the wear interface (n=600)

    图  9   磨损界面的摩擦系数(vs =60 mm/s):(a)未经强化处理;(b)经USRP处理

    Figure  9.   Coefficient of friction at the wear interface (vs = 60 mm/s): (a) untreated; (b) USRP treated

    图  10   磨痕光学显微镜图 (vs=60mm/s):(a)未经强化处理;(b)经USRP处理

    Figure  10.   Light microscope photograph of abrasion scar (vs=60mm/s): (a) untreated; (b) USRP treated

    图  11   磨痕电子显微镜照片 (vs=60 mm/s):(a)未经强化处理;(b)经USRP处理

    Figure  11.   SEM micrographs of wear scars (vs=60 mm/s): (a) untreated; (b) USRP treated

    图  12   经USRP前后试样冲-切磨损行为对比图

    Figure  12.   Comparison chart of impact-sliding wear behavior of specimens before and after USRP

    表  1   超声表面滚压工艺参数

    Table  1   Process parameters for ultrasonic surface rolling

    Ultrasonic rolling parametersCurrentFeed ratePre-pressureThe amount of pressure downNumber of rolls
    Specifications0.5 A2 000 mm/min0.4 MPa0.2 mm2, 4
    下载: 导出CSV

    表  2   冲-切磨损试验参数

    Table  2   Impact-sliding wear test parameters

    Experimental variables Impact velocity, vi Sliding velocity, vs
    1 2 1 2
    Speed value/(mm/s) 30 60 90 60 60 40 60 90
    下载: 导出CSV
  • [1] 杨学松. 化工设计中的常用阀门选型方法分析[J]. 山东化工, 2022, 51(3): 179–180]. doi: 10.19319/j.cnki.issn.1008-021x.2022.03.027.

    Yang Xuesong. Analysis of common valve selection methods in chemical engineering design[J]. Shandong Chemical Industry, 2022, 51(3): 179–180 doi: 10.19319/j.cnki.issn.1008-021x.2022.03.027

    [2] 岳天宇, 温东旭, 李建军, 等. 镍基高温合金690的研究现状[J]. 精密成形工程, 2021, 13(1): 26–34]. doi: 10.3969/j.issn.1674-6457.2021.01.003.

    Yue Tianyu, Wen Dongxu, Li Jianjun, et al. Research progress in nickel-based superalloy 690[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 26–34 doi: 10.3969/j.issn.1674-6457.2021.01.003

    [3] 王坤, 姜鹤明, 金克雨, 等. 球阀表面热喷涂镍基合金强化层耐磨性的研究[J]. 四川冶金, 2022, 44(2): 23–27,59]. doi: 10.3969/j.issn.1001-5108.2022.02.005.

    Wang Kun, Jiang Heming, Jin Keyu, et al. Research on wear resistance of thermal spraying nickel-based alloy strengthening layer on ball valve surface[J]. Sichuan Metallurgy, 2022, 44(2): 23–27,59 doi: 10.3969/j.issn.1001-5108.2022.02.005

    [4] 南春苗. 不同工况下球阀镍基自熔性合金涂层的耐腐蚀性能研究[D]. 银川: 宁夏大学, 2020].

    Nan Chunmiao. Study on corrosion resistance of nickel-based self-fluxing alloy coating on ball valve under different working conditions[D]. Yinchuan: Ningxia University, 2020

    [5]

    Tsai C C, Chang C Y, Tseng C H. Optimal design of metal seated ball valve mechanism[J]. Structural and Multidisciplinary Optimization, 2004, 26(3-4): 249–255. doi: 10.1007/s00158-003-0342-3.

    [6]

    Song X G, Kim S G, Baek S H, et al. Structural optimization for ball valve made of CF8M stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: s258–s261. doi: 10.1016/S1003-6326(10)60280-4.

    [7] 雷永强. 不同开度下球阀磨损性能分析[J]. 机械制造, 2021, 59(3): 43–46]. doi: 10.3969/j.issn.1000-4998.2021.03.011.

    Lei Yongqiang. Wear performance analysis of ball valve under different opening degrees[J]. Machinery, 2021, 59(3): 43–46 doi: 10.3969/j.issn.1000-4998.2021.03.011

    [8] 张智. 浅析石油化工装置阀门密封原理及泄漏原因[J]. 广东化工, 2015, 42(12): 179–180]. doi: 10.3969/j.issn.1007-1865.2015.12.088.

    Zhang Zhi. Reasons of leakage of valve sealing principle in petrochemical plant[J]. Guangdong Chemical Industry, 2015, 42(12): 179–180 doi: 10.3969/j.issn.1007-1865.2015.12.088

    [9] 林韩波, 唐力晨, 钱浩, 等. 核电690合金传热管微动疲劳试验及损伤机理分析[J]. 摩擦学学报, 2022, 42(5): 954–965]. doi: 10.16078/j.tribology. 2021135.

    Lin Hanbo, Tang Lichen, Qian Hao, et al. Fretting fatigue test and damage mechanism analysis of nuclear power 690 alloy heat transfer tube[J]. Tribology, 2022, 42(5): 954–965

    [10] 米雪, 唐攀, 沈平川, 等. 690合金管在不同法向载荷下的切向微动磨损性能研究[J]. 表面技术, 2020, 49(11): 191–197]. doi: 10.16490/j.cnki.issn.1001-3660.2020.11.021.

    Mi Xue, Tang Pan, Shen Pingchuan, et al. Tangential fretting wear characteristics of 690 alloy tubes under different normal force[J]. Surface Technology, 2020, 49(11): 191–197 doi: 10.16490/j.cnki.issn.1001-3660.2020.11.021

    [11]

    Guan Haida, Cai Zhenbing, Ren Yanping, et al. Impact-fretting wear behavior of Inconel 690 alloy tubes effected by pre-compressive stress[J]. Journal of Alloys and Compounds, 2017, 724: 910–920. doi: 10.1016/j.jallcom.2017.07.091.

    [12]

    Souilliart T, Rigaud E, Le Bot A, et al. Energy-based wear law for oblique impacts in dry environment[J]. Tribology International, 2017, 105: 241–249. doi: 10.1016/j.triboint.2016.10.014.

    [13]

    Peng Donghua, Dong Shaohua, Wang Zhiqiang, et al. Characterization of the solid particle erosion of the sealing surface materials of a ball valve[J]. Metals, 2021, 11(2): 263. doi: 10.3390/met11020263.

    [14] 李振岗, 王海燕, 张建勋. 表面改性技术在石油钻采设备零部件中的应用[J]. 热加工工艺, 2018, 47(22): 27–30]. doi: 10.14158/j.cnki.1001-3814.2018.22.006.

    Li Zhengang, Wang Haiyan, Zhang Jianxun. Application of surface modification technology in parts of petroleum drilling equipment[J]. Hot Working Technology, 2018, 47(22): 27–30 doi: 10.14158/j.cnki.1001-3814.2018.22.006

    [15] 刘蔚, 钟强, 钱炯, 等. 核电蒸汽发生器690合金换热管电镀硬铬的性能研究[J]. 电镀与涂饰, 2021, 40(17): 1315–1321]. doi: 10.19289/j.1004-227x.2021.17.001.

    Liu Wei, Zhong Qiang, Qian Jiong, et al. Study on Electroplating of Hard Chromium on 690 Alloy Heat Exchange Tube of Nuclear Power Steam Generator[J]. Electroplating and Finishing, 2021, 40(17): 1315–1321 doi: 10.19289/j.1004-227x.2021.17.001

    [16]

    Lee T H, Suh H Y, Han S K, et al. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes[J]. Journal of Nuclear Materials, 2016, 479: 85–92. doi: 10.1016/j.jnucmat.2016.06.038.

    [17] 罗学昆, 张文灿, 吴波, 等. 激光冲击/喷丸复合强化对K4169铸造合金的表面完整性和疲劳性能的影响[J]. 航空制造技术, 2022, 65(11): 57–62]. doi: 10.16080/j.issn1671-833x.2022.11.057.

    Luo Xuekun, Zhang Wencan, Wu Bo, et al. Effect of combination of laser shock peening and shot peening on surface integrity and fatigue property of K4169 casting alloy[J]. Aeronautical Manufacturing Technology, 2022, 65(11): 57–62 doi: 10.16080/j.issn1671-833x.2022.11.057

    [18] 潘高峰, 朱磊, 苑泽伟, 等. 超声滚压工艺对TC4钛合金表面残余应力的影响[J]. 现代制造工程, 2022, (1): 85–90]. doi: 10.16731/j.cnki.1671-3133.2022.01.012.

    Pan Gaofeng, Zhu Lei, Yuan Zewei, et al. Effect of ultrasonic rolling process on the surface residual stress of TC4 titanium alloy[J]. Modern Manufacturing Engineering, 2022, (1): 85–90 doi: 10.16731/j.cnki.1671-3133.2022.01.012

    [19] 王世杰, 邓建新, 孟莹, 等. 超声滚压加工表面微织构的研究[J]. 制造技术与机床, 2022, (2): 73–79]. doi: 10.19287/j.cnki.1005-2402.2022.02.013.

    Wang Shijie, Deng Jianxin, Meng Ying, et al. Study on surface micro texture processing by ultrasonic rolling[J]. Manufacturing Technology & Machine Tool, 2022, (2): 73–79 doi: 10.19287/j.cnki.1005-2402.2022.02.013

    [20] 唐洋洋, 李林波, 王超, 等. 超声表面滚压纳米化技术研究现状[J]. 表面技术, 2021, 50(2): 160–169]. doi: 10.16490/j.cnki.issn.1001-3660.2021.02.016.

    Tang Yangyang, Li Linbo, Wang Chao, et al. Research status of USRP nanocrystallization technology[J]. Surface Technology, 2021, 50(2): 160–169 doi: 10.16490/j.cnki.issn.1001-3660.2021.02.016

    [21] 钟厉, 王帅峰, 门昕皓, 等. 38CrMoAl钢钛催渗等离子氮化工艺研究[J]. 表面技术, 2021, 50(12): 159–166]. doi: 10.16490/j.cnki.issn.1001-3660.2021.12.016.

    Zhong Li, Wang Shuaifeng, Men Xinhao, et al. Research on plasma nitriding process of 38CrMoAl steel with Ti catalyst[J]. Surface Technology, 2021, 50(12): 159–166 doi: 10.16490/j.cnki.issn.1001-3660.2021.12.016

    [22]

    Morozow D, Barlak M, Werner Z, et al. Wear resistance improvement of cemented tungsten carbide deep-hole drills after ion implantation[J]. Materials, 2021, 14(2): 239. doi: 10.3390/ma14020239.

    [23] 孟成, 赵运才, 张新宇, 等. 超声滚压表面强化技术的研究现状与应用[J]. 表面技术, 2022, 51(8): 179–202]. doi: 10.16490/j.cnki.issn.1001-3660.2022.08.015.

    Meng Cheng, Zhao Yuncai, Zhang Xinyu, et al. Research and application of ultrasonic rolling surface strengthening technology[J]. Surface Technology, 2022, 51(8): 179–202 doi: 10.16490/j.cnki.issn.1001-3660.2022.08.015

    [24]

    Liu Junbiao, Zhang Xuehui, Cui Ziyi, et al. Experimental investigation on ultrasonic surface rolling of Inconel 690TT[J]. Materials and Manufacturing Processes, 2021, 36(10): 1208–1217. doi: 10.1080/10426914.2021.1905831.

    [25] 阳荣, 蔡振兵, 林映武, 等. 690合金管在室温干态下的冲击微动磨损特性研究[J]. 摩擦学学报, 2015, 35(5): 525–530]. doi: 10.16078/j.tribology.2015.05.002.

    Yang Rong, Cai Zhenbing, Lin Yingwu, et al. Investigation on impact fretting wear behavior of alloy 690 tube at dry and room temperature[J]. Tribology, 2015, 35(5): 525–530 doi: 10.16078/j.tribology.2015.05.002

    [26]

    Luo Xian, Ren Xueping, Jin Qi, et al. Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy[J]. Journal of Materials Research and Technology, 2021, 13: 1586–1598. doi: 10.1016/j.jmrt.2021.05.065.

    [27]

    John M, Ralls A M, Dooley S C, et al. Ultrasonic surface rolling process: properties, characterization, and applications[J]. Applied Sciences, 2021, 11(22): 10986. doi: 10.3390/app112210986.

    [28] 徐志彪, 李德香, 王忠, 等. Inconel 718激光熔覆合金层切向微动磨损特性研究[J]. 摩擦学学报, 2023, 43(5): 517–527]. doi: 10.16078/j.tribology.2022010.

    Xu Zhibiao, Li Dexiang, Wang Zhong, et al. Tangential fretting wear characteristics of inconel 718 laser melting alloy layer[J]. Tribology, 2023, 43(5): 517–527 doi: 10.16078/j.tribology.2022010

    [29]

    Yin Meigui, Cai Zhenbing, Yu Yanqing, et al. Impact-sliding wear behaviors of 304SS influenced by different impact kinetic energy and sliding velocity[J]. Tribology International, 2020, 143: 106057. doi: 10.1016/j.triboint.2019.106057.

图(12)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-08-14
  • 录用日期:  2023-08-14
  • 网络出版日期:  2024-03-09
  • 发布日期:  2024-04-01
  • 刊出日期:  2024-07-27

目录

    /

    返回文章
    返回