ISSN   1004-0595

CN  62-1224/O4

高级检索

MoS2-C异质复合薄膜的真空超滑行为及其机制研究

李煊禹, 吉利, 刘晓红, 孙初锋, 李红轩

李煊禹, 吉利, 刘晓红, 孙初锋, 李红轩. MoS2-C异质复合薄膜的真空超滑行为及其机制研究[J]. 摩擦学学报, 2023, 43(10): 1140-1150. DOI: 10.16078/j.tribology.2022174
引用本文: 李煊禹, 吉利, 刘晓红, 孙初锋, 李红轩. MoS2-C异质复合薄膜的真空超滑行为及其机制研究[J]. 摩擦学学报, 2023, 43(10): 1140-1150. DOI: 10.16078/j.tribology.2022174
LI Xuanyu, JI Li, LIU Xiaohong, SUN Chufeng, LI Hongxuan. Superlubricity Behavior and Mechanism of MoS2-C Heterostructure Composite Films in Vacuum[J]. TRIBOLOGY, 2023, 43(10): 1140-1150. DOI: 10.16078/j.tribology.2022174
Citation: LI Xuanyu, JI Li, LIU Xiaohong, SUN Chufeng, LI Hongxuan. Superlubricity Behavior and Mechanism of MoS2-C Heterostructure Composite Films in Vacuum[J]. TRIBOLOGY, 2023, 43(10): 1140-1150. DOI: 10.16078/j.tribology.2022174
李煊禹, 吉利, 刘晓红, 孙初锋, 李红轩. MoS2-C异质复合薄膜的真空超滑行为及其机制研究[J]. 摩擦学学报, 2023, 43(10): 1140-1150. CSTR: 32261.14.j.tribology.2022174
引用本文: 李煊禹, 吉利, 刘晓红, 孙初锋, 李红轩. MoS2-C异质复合薄膜的真空超滑行为及其机制研究[J]. 摩擦学学报, 2023, 43(10): 1140-1150. CSTR: 32261.14.j.tribology.2022174
LI Xuanyu, JI Li, LIU Xiaohong, SUN Chufeng, LI Hongxuan. Superlubricity Behavior and Mechanism of MoS2-C Heterostructure Composite Films in Vacuum[J]. TRIBOLOGY, 2023, 43(10): 1140-1150. CSTR: 32261.14.j.tribology.2022174
Citation: LI Xuanyu, JI Li, LIU Xiaohong, SUN Chufeng, LI Hongxuan. Superlubricity Behavior and Mechanism of MoS2-C Heterostructure Composite Films in Vacuum[J]. TRIBOLOGY, 2023, 43(10): 1140-1150. CSTR: 32261.14.j.tribology.2022174

MoS2-C异质复合薄膜的真空超滑行为及其机制研究

基金项目: 国家自然科学基金(U2141210, 52167003)、甘肃省重点研发项目(21YF5WA064)、中国科学院青年创新促进会项目(Y202084)和中国科学院兰州化学物理研究所重大突破项目(KJZLZD-3)资助.
详细信息
  • 中图分类号: TH117.1

Superlubricity Behavior and Mechanism of MoS2-C Heterostructure Composite Films in Vacuum

Funds: This project was supported by National Natural Science Foundation of China (U2141210, 52167003),the key Research and Development Projects of Gansu Province (21YF5WA064), Youth Innovation Promotion Association of Chinese Academy of Sciences (Y202084) and Key Program of the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (KJZLZD-3).
More Information
  • 摘要:

    采用闭合场非平衡磁控溅射技术制备了MoS2-C异质复合薄膜,利用多环境可控摩擦试验机测试了薄膜在真空环境中的摩擦学性能,通过拉曼光谱仪(Raman)、X射线衍射仪(XRD)和透射电子显微镜(TEM)等表征手段分析了薄膜摩擦前后结构的变化,探讨了超润滑机理. 结果表明:复合薄膜呈现致密的“纳米晶/非晶”结构,在真空中具有优异的摩擦学性能,保持了超低摩擦系数(0.006~0.009)和磨损率[1.026×10-7 mm3/(N·m)],达到了超润滑状态. 摩擦过程中碳选择性转移到钢球表面形成非晶碳转移层,薄膜磨痕表面形成有序的MoS2 (002)晶面,摩擦发生在MoS2有序晶体和非晶碳转移膜之间,形成非公度异质接触,降低摩擦系数实现超润滑. 钢球/MoS2-Ti、a-C:H/MoS2-Ti摩擦配副在相同条件下的不同摩擦行为,也证明了上述超润滑机理.

    Abstract:

    Molybdenum disulfide (MoS2) shows excellent lubricating properties in high vacuum condition due to its unique layered structure. But passivation to oxygen atmosphere like ambient air makes tribological performance lower. Although the a-C:H films exhibit super-low friction coefficient and wear rate in N2 condition, the long duration for super-low friction seems to be an important issue for its application in high vacuum. This paper aimed to combine MoS2 and a-C:H films to meet the requirements of high vacuum condition and super-low friction coefficient and long wear life under practical working conditions. Based on this, firstly, MoS2-C composite films were deposited by closed field unbalanced magnetron sputtering technology. The tribological properties of the films were tested by HVTRB in vacuum condition. The structure changes of the film before and after friction were analyzed by Raman, XRD, TEM and other analytical techniques. And the superlubricity mechanism was investigated in this study. It suggested that the composite films exhibit a dense "nanocrystalline/amorphous" microstructure, which maintain super-low friction coefficient (0.006~0.009) and wear rate [1.026×10-7 mm3/(N·m)], reaching a superlubricity state. The wear tracks and wear scars were observed by a three-dimensional profiler. It revealed that the contact area was covered with thin transfer film, while a small amount of wear debris distributed around. Furthermore, different from the as-deposited films, it was observed by

    Raman that MoS2 peak around 380 cm-1 and 410 cm-1 of the wear track was obviously enhanced. A broad peak at 1 200~1 600 cm-1, indentified as amorphous carbon, was observed on the wear scar. During the friction process, C was selectively transferred to the surface of the steel ball to form an amorphous carbon transfer film. Meanwhile, the relatively disordered structure became more ordered, resulting in the presence of well aligned MoS2 in the interface, which was prone to shear the basal plane oriented along the sliding direction. The friction occurred between the ordered MoS2 crystal and the amorphous carbon transfer film. The heterostructure leaded to incommensurate contact between the frictional interfaces, resulting in establishing superlow friction during the friction period. In addition, MoS2-Ti film and a-C:H film were deposited. The friction behaviors of steel /MoS2-Ti and a-C:H/MoS2-Ti were very different under the same condition. For steel/MoS2-Ti friction pair, it was found that the transformation of amorphous MoS2 into re-ordered MoS2 on the wear track after friction. The MoS2 crystal was transferred to the steel ball. Consequently, the friction occurred between MoS2 and MoS2, which cannot achieve superlubricity. For a-C:H/MoS2-Ti friction pair, the crystallinity of MoS2 on the wear track became better after friction. The ordered MoS2 formed incommensurate contact with the a-C:H film on the steel ball, which achieved superlubricity. The above-mentioned superlubricity mechanism was proved by the different experiments.

  • 图  1   MoS2-C复合薄膜的(a) XRD和(b)拉曼光谱

    Figure  1.   (a) XRD pattern and (b) Raman pattern of MoS2-C composite film

    图  2   MoS2-C薄膜截面FIB-TEM照片:(a)薄膜截面透射照片;(b)薄膜高倍截面形貌与相应的SEAD照片;(c)元素线扫描;(d) EDS能谱

    Figure  2.   FIB-TEM cross-sections of MoS2-C composite film: (a) film cross-sectional transmission photograph; (b) film high magnification cross-sectional morphology with corresponding SEAD pattern; (c) the elemental line distribution; (d) EDS spectra

    图  3   MoS2-C薄膜在真空下的摩擦曲线

    Figure  3.   Friction curves of MoS2-C film in vacuum

    图  4   MoS2-C薄膜的表征:磨痕的(a)形貌SEM照片,(b)磨损深度和(c)拉曼光谱;磨斑的(d)形貌SEM照片和(e)拉曼光谱

    Figure  4.   The characterization of MoS2-C film: (a) SEM micrograph of morphology, (b) wear depth and (c) Raman spectrum of wear track; (d) SEM micrograph of morphology and (e) Raman spectrum of wear scar

    图  5   在真空中摩擦后MoS2-C薄膜上磨痕的截面FIB-HRTEM照片:(a~b)不同放大倍数形貌以及磨斑的截面FIB-HRTEM照片:(c~e)不同放大倍数形貌

    Figure  5.   Cross-sectional FIB-HRTEM mocrographs of wear track on MoS2-C film after friction in vacuum: (a~b) morphology at different magnification and FIB-HRTEM micrographs of the wear scar section: (c~e) the morphology at different magnifications

    图  6   a-C:H/MoS2-Ti和Steel/MoS2-Ti摩擦配副在真空中的摩擦曲线

    Figure  6.   Friction curves of a-C:H/MoS2-Ti and steel/MoS2-Ti in vacuum

    图  7   Steel/MoS2-Ti摩擦配副的表征:磨痕的(a) 形貌SEM照片,(b)磨损深度和(c)拉曼光谱;磨斑的(d) SEM照片和(e)拉曼光谱. (f) MoS2-Ti薄膜的拉曼光谱

    Figure  7.   Characterization of steel/MoS2-Ti friction pairs: (a) SEM micrograph, (b) wear depth and (c) Raman spectrum of wear track; (d) SEM micrograph and (e) Raman spectrum of wear scar. (f) Raman spectrum of MoS2-Ti films

    图  8   a-C:H/MoS2-Ti摩擦配副的表征:磨痕的(a)形貌SEM照片,(b)磨损深度和(c)拉曼光谱;磨斑的(d) SEM照片和(e)拉曼光谱. (f) MoS2-Ti薄膜的拉曼光谱

    Figure  8.   Characterization of a-C:H/MoS2-Ti friction pairs: (a) SEM micrograph, (b) wear depth and (c) Raman spectrum of wear track; (d) SEM micrograph and (e) Raman spectrum of wear scar. (f) Raman spectrum of MoS2-Ti films

    图  9   3种不同摩擦配副在真空中摩擦后薄膜的磨损率

    Figure  9.   Wear rates of films after the fiction of three different friction pairs in vacuum

    图  10   3种不同摩擦配副在真空中的摩擦机理图

    Figure  10.   Friction mechanism diagram of three different friction pairs in vacuum

    表  1   3种薄膜的沉积参数

    Table  1   Deposition parameters of the three films

    Films Target current/A Deposition time/h Bias voltage/V
    Graphite MoS2 Ti
    MoS2-C 2 1.2 0 2 -40
    а-C:H 7 0 0 2 -200
    MoS2-Ti 0 1.2 0.4 2 -40
    下载: 导出CSV
  • [1]

    Song Yiming, Mandelli D, Hod O, et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions[J]. Nature Materials, 2018, 17(10): 894–899. doi: 10.1038/s41563-018-0144-z

    [2]

    Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al. Macroscale superlubricity enabled by graphene nanoscroll formation[J]. Science, 2015, 348(6239): 1118–1122. doi: 10.1126/science.1262024

    [3]

    Hod O, Meyer E, Zheng Quanshui, et al. Structural superlubricity and ultralow friction across the length scales[J]. Nature, 2018, 563(7732): 485–492. doi: 10.1038/s41586-018-0704-z

    [4]

    Zhang Rufan, Ning Zhiyuan, Zhang Yingying, et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions[J]. Nature Nanotechnology, 2013, 8(12): 912–916. doi: 10.1038/nnano.2013.217

    [5]

    Deng He, Ma Ming, Song Yiming, et al. Structural superlubricity in graphite flakes assembled under ambient conditions[J]. Nanoscale, 2018, 10(29): 14314–14320. doi: 10.1039/C7NR09628C

    [6] 裴露露, 鞠鹏飞, 吉利, 等. 不同接触尺度下石墨烯摩擦学性能研究进展[J]. 表面技术, 2020, 49(4): 141–150 doi: 10.16490/j.cnki.issn.1001-3660.2020.04.016

    Pei Lulu, Ju Pengfei, Ji Li, et al. Research progress of tribological properties of graphene at different contact scales[J]. Surface Technology, 2020, 49(4): 141–150 doi: 10.16490/j.cnki.issn.1001-3660.2020.04.016

    [7]

    Li Panpan, Ju Pengfei, Ji Li, et al. Toward robust macroscale superlubricity on engineering steel substrate[J]. Advanced Materials, 2020, 32(36): 2002039. doi: 10.1002/adma.202002039

    [8] 柴利强, 宁可心, 乔丽, 等. γ辐照对a-C: H薄膜微观组织、力学性能及摩擦学性能的影响[J]. 摩擦学学报, 2021, 41(2): 169–175 doi: 10.16078/j.tribology.2020093

    Chai Liqiang, Ning Kexin, Qiao Li, et al. Influence of gamma irradiation on microstructure, mechanical properties and tribological properties of a-C: H films[J]. Tribology, 2021, 41(2): 169–175 doi: 10.16078/j.tribology.2020093

    [9] 闫明明, 剡珍, 王新宇, 等. C2H2/Ar流量比对a-C: H涂层结构及摩擦学性能的影响[J]. 摩擦学学报, 2022, 42(3): 588–597 doi: 10.16078/j.tribology.2021029

    Yan Mingming, Yan Zhen, Wang Xinyu, et al. Effect of C2H2/Ar flow rate on microstructure and tribological properties of a-C: H coatings[J]. Tribology, 2022, 42(3): 588–597 doi: 10.16078/j.tribology.2021029

    [10]

    Erdemir A. Genesis of superlow friction and wear in diamondlike carbon films[J]. Tribology International, 2004, 37(11-12): 1005–1012. doi: 10.1016/j.triboint.2004.07.018

    [11] 宁可心, 王鹏, 江海霞, 等. 含氢无定型碳摩擦转移膜结构演化规律研究[J]. 摩擦学学报, 2021, 41(4): 484–492 doi: 10.16078/j.tribology.2020189

    Ning Kexin, Wang Peng, Jiang Haixia, et al. Structural Evolution of the transfer film of a-C: H[J]. Tribology, 2021, 41(4): 484–492 doi: 10.16078/j.tribology.2020189

    [12] 吴艳霞, 李红轩, 吉利, 等. a-C∶H膜在不同真空度下的摩擦学行为研究[J]. 功能材料, 2012, 43(3): 313–316

    Wu Yanxia, Li Hongxuan, Ji Li, et al. Investigation into the tribological properties of a-C∶H film under different vacuum degree[J]. Journal of Functional Materials, 2012, 43(3): 313–316

    [13]

    Fontaine J, Loubet J L, Le Mogne T, et al. Superlow friction of diamond-like carbon films: a relation to viscoplastic properties[J]. Tribology Letters, 2004, 17(4): 709–714. doi: 10.1007/s11249-004-8077-x

    [14]

    Liu Xiaoqiang, Yang Jun, Hao Junying, et al. A near-frictionless and extremely elastic hydrogenated amorphous carbon film with self-assembled dual nanostructure[J]. Advanced Materials, 2012, 24(34): 4614–4617. doi: 10.1002/adma.201200085

    [15]

    Voevodin A A, Zabinski J S. Nanocomposite and nanostructured tribological materials for space applications[J]. Composites Science and Technology, 2005, 65(5): 741–748. doi: 10.1016/j.compscitech.2004.10.008

    [16]

    Takeno T, Abe S, Adachi K, et al. Deposition and structural analyses of molybdenum-disulfide (MoS2)-amorphous hydrogenated carbon (a-C: H) composite coatings[J]. Diamond and Related Materials, 2010, 19(5-6): 548–552. doi: 10.1016/j.diamond.2009.10.028

    [17]

    Voevodin A A, Bultman J, Zabinski J S. Investigation into three-dimensional laser processing of tribological coatings[J]. Surface and Coatings Technology, 1998, 107(1): 12–19. doi: 10.1016/s0257-8972(98)00543-x

    [18] 胡汉军, 张凯锋, 周晖, 等. 原子氧对非平衡磁控溅射MoS2-Ti复合薄膜真空摩擦学性能的影响[J]. 摩擦学学报, 2021, 41(5): 627–635 doi: 10.16078/j.tribology.2020240

    Hu Hanjun, Zhang Kaifeng, Zhou Hui, et al. Influence of Atomic oxygen on the vcuum tribological performance of MoS2-Ti composite films deposited by unbalanced magnetron sputtering[J]. Tribology, 2021, 41(5): 627–635 doi: 10.16078/j.tribology.2020240

    [19] 谢明玲, 张广安, 史鑫, 等. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59–64

    Xie Mingling, Zhang Guang'an, Shi Xin, et al. Anti-oxidization and electronic properties of Ti doped MoS2 films[J]. Chinese Journal of Materials Research, 2021, 35(1): 59–64

    [20] 刘勇, 苏峰华, 孙建芳, 等. MoS2-Ti自润滑复合薄膜的高温摩擦学性能研究[J]. 表面技术, 2022, 51(2): 20–28

    Liu Yong, Su Fenghua, Sun Jianfang, et al. Tribological properties of MoS2-Ti self-lubricating composite film at high temperature[J]. Surface Technology, 2022, 51(2): 20–28

    [21]

    Chhowalla M, Amaratunga G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear[J]. Nature, 2000, 407(6801): 164–167. doi: 10.1038/35025020

    [22]

    Baker C C, Hu J J, Voevodin A A. Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments[J]. Surface and Coatings Technology, 2006, 201(7): 4224–4229. doi: 10.1016/j.surfcoat.2006.08.067

    [23]

    Voevodin A A, O'Neill J P, Zabinski J S. WC/DLC/WS2 nanocomposite coatings for aerospace tribology[J]. Tribology Letters, 1999, 6(2): 75–78. doi: 10.1023/A:1019163707747

    [24]

    Wu Yanxia, Li Hongxuan, Ji Li, et al. Structure, mechanical, and tribological properties of MoS2/a-C: H composite films[J]. Tribology Letters, 2013, 52(3): 371–380. doi: 10.1007/s11249-013-0216-9

    [25]

    Berman D, Narayanan B, Cherukara M J, et al. Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity[J]. Nature Communications, 2018, 9: 1164. doi: 10.1038/s41467-018-03549-6

    [26]

    Yu Guomin, Zhang Zhenxi, Tian Pei, et al. Macro-scale superlow friction enabled when MoS2 flakes lubricate hydrogenated diamond-like carbon film[J]. Ceramics International, 2021, 47(8): 10980–10989. doi: 10.1016/j.ceramint.2020.12.219

    [27]

    Song Haojie, Wang Biao, Zhou Qiang, et al. Preparation and tribological properties of MoS2/graphene oxide composites[J]. Applied Surface Science, 2017, 419: 24–34. doi: 10.1016/j.apsusc.2017.05.022

    [28]

    Yang Junfeng, Parakash B, Hardell J, et al. Tribological properties of transition metal di-chalcogenide based lubricant coatings[J]. Frontiers of Materials Science, 2012, 6(2): 116–127. doi: 10.1007/s11706-012-0155-7

    [29]

    Gu Lei, Ke Peiling, Zou Yousheng, et al. Amorphous self-lubricant MoS2-C sputtered coating with high hardness[J]. Applied Surface Science, 2015, 331: 66–71. doi: 10.1016/j.apsusc.2015.01.057

    [30] 王茹, 李红轩, 吉利, 等. MoS2基复合薄膜真空高温摩擦学性能及其机理研究[J]. 摩擦学学报, 2023, 43(1): 73–82 doi: 10.16078/j.tribology.2021296

    Wang Ru, Li Hongxuan, Ji Li, et al. Tribological properties of MoS2-based composite films at different temperature in vacuum and its mechanism[J]. Tribology, 2023, 43(1): 73–82 doi: 10.16078/j.tribology.2021296

    [31]

    Jiang Bangzheng, Zhao Zhicheng, Gong Zhenbin, et al. Superlubricity of metal-metal interface enabled by graphene and MoWS4 nanosheets[J]. Applied Surface Science, 2020, 520: 146303. doi: 10.1016/j.apsusc.2020.146303

    [32] 吴娟霞, 谢黎明. 二维材料的拉曼光谱研究进展[J]. 科学通报, 2018, 63(35): 3727–3746 doi: 10.1360/N972018-00849

    Wu Juanxia, Xie Liming. Research progress of Raman spectroscopy of two-dimensional materials[J]. Chinese Science Bulletin, 2018, 63(35): 3727–3746 doi: 10.1360/N972018-00849

    [33]

    Sun Lei, Gao Kaixiong, Jia Qian, et al. Grown of superlubricity a-C: H/MoS2 film on 9Cr18Mo steel for industrial application[J]. Diamond and Related Materials, 2021, 117: 108479. doi: 10.1016/j.diamond.2021.108479

    [34] 蔡胜, 郭鹏, 左潇, 等. 载荷对MoS2/C复合薄膜摩擦学行为的影响[J]. 摩擦学学报, 2018, 38(1): 51–58 doi: 10.16078/j.tribology.2018.01.007

    Cai Sheng, Guo Peng, Zuo Xiao, et al. Effect of load on tribological behavior of MoS2/C composite films[J]. Tribology, 2018, 38(1): 51–58 doi: 10.16078/j.tribology.2018.01.007

    [35]

    Yang Yang, Li Aijun, Cao Xi, et al. Use of a diatomite template to prepare a MoS2/amorphous carbon composite and exploration of its electrochemical properties as a supercapacitor[J]. RSC Advances, 2018, 8(62): 35672–35680. doi: 10.1039/C8RA07062H

    [36]

    Liu Gen, Zhou Shengguo, Li Qunfang, et al. Effect of MoS2 on tribological properties and corrosion resistance of MoS2/a-C: H films fabricated via reactive magnetron sputtering technology[J]. Materials Research Express, 2019, 6(9): 096419. doi: 10.1088/2053-1591/ab2e91

    [37] 张斌, 吉利, 鲁志斌, 等. 工程导向固体超滑(超低摩擦)研究进展[J]. 摩擦学学报, 2023, 43(1): 3–17 doi: 10.16078/j.tribology.2021224

    Zhang Bin, Ji Li, Lu Zhibin, et al. Progress on engineering oriented solid superlubricity[J]. Tribology, 2023, 43(1): 3–17 doi: 10.16078/j.tribology.2021224

    [38] 耿中荣, 李霞, 张广安, 等. MoS2/a-C复合薄膜在高/低湿度环境下的摩擦学性能研究[J]. 摩擦学学报, 2016, 36(4): 481–487 doi: 10.16078/j.tribology.2016.04.012

    Geng Zhongrong, Li Xia, Zhang Guang'an, et al. Tribological properties of MoS2/a-C composite films under high/low humidity environments[J]. Tribology, 2016, 36(4): 481–487 doi: 10.16078/j.tribology.2016.04.012

    [39]

    Mutyala K C, Wu Y A, Erdemir A, et al. Graphene - MoS2 ensembles to reduce friction and wear in DLC-Steel contacts[J]. Carbon, 2019, 146: 524–527. doi: 10.1016/j.carbon.2019.02.047

    [40]

    Hou Kaiming, Yang Shengrong, Liu Xiaohong, et al. The self-ordered lamellar texture of MoS2 transfer film formed in complex lubrication[J]. Advanced Materials Interfaces, 2018, 5(8): 1701682. doi: 10.1002/admi.201701682

    [41]

    Wang Dingshiang, Chang Shouyi, Huang Yichuang, et al. Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces[J]. Carbon, 2014, 74: 302–311. doi: 10.1016/j.carbon.2014.03.035

    [42]

    Cui Longchen, Lu Zhibin, Wang Liping. Toward low friction in high vacuum for hydrogenated diamondlike carbon by tailoring sliding interface[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 5889–5893. doi: 10.1021/am401192u

    [43]

    Stoyanov P, Stemmer P, Järvi T T, et al. Friction and wear mechanisms of tungsten-carbon systems: a comparison of dry and lubricated conditions[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6123–6135. doi: 10.1021/am4010094

  • 期刊类型引用(1)

    1. 杨秀杰,陆乾江,周钊元,唐正强. MoS_2-TiCr/C涂层在大气及海水环境中的摩擦学行为研究. 摩擦学学报(中英文). 2025(02): 300-314 . 百度学术

    其他类型引用(0)

图(10)  /  表(1)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  36
  • PDF下载量:  59
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-12-26
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-09-16
  • 发布日期:  2022-12-28
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回