ISSN   1004-0595

CN  62-1224/O4

高级检索

Inconel 718激光熔覆合金层切向微动磨损特性研究

徐志彪, 李德香, 王忠, 鲁志杰, 张俊, 刘卫东, 彭金方

徐志彪, 李德香, 王忠, 鲁志杰, 张俊, 刘卫东, 彭金方. Inconel 718激光熔覆合金层切向微动磨损特性研究[J]. 摩擦学学报, 2023, 43(5): 517-527. DOI: 10.16078/j.tribology.2022010
引用本文: 徐志彪, 李德香, 王忠, 鲁志杰, 张俊, 刘卫东, 彭金方. Inconel 718激光熔覆合金层切向微动磨损特性研究[J]. 摩擦学学报, 2023, 43(5): 517-527. DOI: 10.16078/j.tribology.2022010
XU Zhibiao, LI Dexiang, WANG Zhong, LU Zhijie, ZHANG Jun, LIU Weidong, PENG Jinfang. Tangential Fretting Wear Characteristics of Inconel 718 Laser Melting Alloy Layer[J]. TRIBOLOGY, 2023, 43(5): 517-527. DOI: 10.16078/j.tribology.2022010
Citation: XU Zhibiao, LI Dexiang, WANG Zhong, LU Zhijie, ZHANG Jun, LIU Weidong, PENG Jinfang. Tangential Fretting Wear Characteristics of Inconel 718 Laser Melting Alloy Layer[J]. TRIBOLOGY, 2023, 43(5): 517-527. DOI: 10.16078/j.tribology.2022010

Inconel 718激光熔覆合金层切向微动磨损特性研究

基金项目: 国家自然科学基金(52105202)和广东省基础与应用基础研究基金(2020A1515011407)资助.
详细信息
  • 中图分类号: TH117.1

Tangential Fretting Wear Characteristics of Inconel 718 Laser Melting Alloy Layer

Funds: This project was supported by the National Natural Science Foundation of China (52105202) and Guangdong Basic and Applied Basic Research Foundation (2020A1515011407).
More Information
  • 摘要:

    采用激光熔覆沉积技术制备Inconel 718合金试样,通过自主研制的多功能复合微动摩擦磨损试验机,在平面/球的点接触模式下进行切向微动磨损试验,探究合金试样在不同法向载荷和不同位移幅值下的磨损特性. 试验结束后,对获得的摩擦力-位移曲线、摩擦系数曲线和耗散能等结果进行详细的动力学特性分析,再采用扫描电子显微镜和三维形貌仪对磨损表面及磨痕截面进行微观分析,得到其磨损形貌及主要的磨损机制. 结果表明:当位移幅值不变时,随着法向载荷的增加,微动运行状态由完全滑移区转变成混合区,材料的磨损损伤逐渐加剧,微动磨损导致的能量耗散增加;随着位移幅值增加,材料的磨损损伤同样加剧;微动磨损区域出现裂纹的萌生和扩展现象,其主要的磨损机制为疲劳磨损、氧化磨损和磨粒磨损.

    Abstract:

    As a new method of components damage repair, laser cladding deposition technology has been widely used in the repair of aeroengine turbine blades. Turbine blade is the key component of aero-engine power energy device, fretting wear is one of the main reasons for its fracture failure. Therefore, exploring the fretting damage characteristics of laser cladding deposited nickel base alloy is great significance to the safe service of repaired aeroengine. In this study, the tangential fretting wear tests were carried out by using the self-developed multi-functional composite fretting wear tester under the point contact mode of ball-on-flat. The fretting wear characteristics of the Inconel718 alloy samples prepared by laser cladding deposition under different normal loads (Fn =10, 25, 50 N) and different displacement amplitudes (D=100, 200 μm) were investigated. After the tests, the dynamic characteristics of the obtained friction displacement curve, friction coefficient curve and dissipated energy were analyzed in detail, and the main fretting mechanism of the sample in the process of fretting wear was obtained. The wear morphology of the surface and section of the sample were analyzed by scanning electron microscope, and the main damage and wear mechanism of the sample in the process of fretting wear were obtained. The micro element composition of the damaged area was analyzed by electronic energy spectrometer, and the fretting wear damage mechanism was further explored. The three-dimensional wear morphology of the sample was analyzed by three-dimensional profiler, and the wear volume of the wear mark was measured. The results show that when the displacement amplitude was 100 μm and the normal load was 10N, the friction force displacement curve was an obvious parallelogram shape, and the fretting wear running in the gross slip regime. When the displacement amplitude was 100 μm and the normal load increases to 25 N, the friction displacement curve showed the mutual transformation between ellipse and parallelogram, and the fretting wear was running in the mixed slip regime. As the same, when the displacement amplitude increased to 200 μm and the normal load reached 50 N, the friction displacement curve showed the conversion between ellipse and parallelogram, and the fretting wear was running in the mixed slip regime too. Under the same displacement amplitude, with the continuous increase of normal load, the fretting wear was running changed from gross slip regime to mixed slip, and the damage of materials were gradually aggravated. The integral area of the figure surrounded by the friction force displacement curve increased gradually, and the energy dissipation caused by fretting wear increased. The volume, width and depth of the wear scar increased gradually. The friction coefficient curve obtained in the fretting tests showed three stages: rising stage, falling stage and stabilizing stage. Moreover, when the normal load was constant, with the increase of displacement amplitude, the two contact bodies were more prone to relative slip and the wear damage of materials was intensified. The fretting damage evolution law of materials were changed with the continuous progress of fretting test. Firstly, the fretting damage zone appeared large peeling and massive wear debris, and with the initiation and propagation of cracks. As the test continue, the massive wear debris was peeled and broken, finally a large amounts of fine wear debris were formed. The main mechanisms of fretting wear of Inconel 718 alloy samples prepared by laser cladding deposition were fatigue wear, oxidation wear and abrasive wear.

  • 航空发动机作为航空飞行器的核心部件之一,其服役可靠性对航空飞行器的安全运行非常重要[1-2]. 航空发动机上的任何损伤都可能对飞行安全带来严重影响,甚至造成重大的经济损失和人员伤亡. 特别是,作为航空发动机动力能源装置的关键部件,镍基高温叶片在长期服役过程中极易发生微动损伤现象[3-4],导致叶片的断裂失效[5],极大地降低飞行构件的服役安全性,给航空飞行器带来严重的安全隐患. 因此,探究镍基合金材料的微动损伤机理,对保障航空安全运行十分重要[6-7].

    目前,Li等[8-9]探究了位移幅值和循环次数的变化对Inconel 600合金微动磨损行为及机理的影响. 结果表明,随着位移幅值和循环次数的增大,微动运行模式发生了转变,由黏着转变成滑移,磨损逐渐增大,主要的磨损机制为黏着磨损和氧化磨损. Jeong等[10]在空气和高温水环境下对Inconel 690TT合金进行了微动磨损研究. 结果表明,在空气中获得的摩擦系数较小,损伤较小,主要的磨损机制为疲劳磨损. 在高温水环境中获得的摩擦系数较大,而且随着水温的升高,摩擦系数、磨损率和磨损体积都出现了一定程度上的增大,磨损机制的转变受微坑影响. Zhang等[11]探究了温度对Incoloy 800合金微动磨损性能的影响,结果表明,随着温度的升高,微动运行出现部分滑移区、混合区和滑移区三种模式. 微动运行于部分滑移区时,出现微裂纹,主要的磨损机制为轻微磨粒磨损和微裂纹的萌生. 而当表面微动状态为混合区和滑移区时,主要的磨损机制为疲劳磨损、氧化磨损和磨粒磨损. Attia等[12]研究了温度对Inconel 718合金微动磨损的影响,结果表明,随着温度的升高,摩擦系数逐渐降低.

    随着增材制造技术飞速崛起,实现了机器零件从微观到宏观的构建[13]. 因此,增材制造技术在发动机涡轮盘、叶片和燃烧室等复杂部件制造和修复方面被广泛应用,使得航空航天制造业出现革命性的转变[14-15]. 特别地,作为航空航天工业最佳的修复工艺—激光熔覆沉积技术,已经被应用于航空发动机各磨损部件的修复[16]. 然而,现有研究中关于传统工艺制备的镍基合金的微动损伤研究相对较多,对激光熔覆沉积技术制备的镍基合金微动磨损的研究非常有限. 因此,探究激光熔覆沉积制备的镍基合金的微动磨损特性,对修复后航空发动机零部件的服役安全性具有非常重要的现实意义.

    采用激光熔覆沉积技术在锻造成形的Inconel 718合金基材上制备了Inconel 718合金试样,如图1(a)所示,然后用线切割截取尺寸为20 mm×10 mm×5 mm的块状试样[17]. 试验开始前,所有试样均依次经过400、800、1000、1 200、1 500和2 000砂纸打磨,然后进行表面抛光处理,试样表面粗糙度达到Ra=0.01 mm,最后把抛光后的试样放进无水乙醇中,采用超声清洗去除黏附在试样表面的杂质. 图1(a)所示为激光熔覆沉积制备的Inconel 718合金试样,图1(b)所示为试验材料的金相组织,可以看出,激光熔覆沉积制备的Inconel 718合金金相组织主要由枝晶间共晶和沿晶界的非晶相组成(黄色虚线为熔池边界). 另外,微观组织呈枝晶分布,其组织为胞状晶组织,其内部为亚微类级晶粒,枝晶间存在不同角度分布(红色箭头所示)[18-19]. 由图1(c)所示的试样的XRD (X射线衍射)图谱可知,Inconel 718合金试样主要的析出相为γ相和Laves相,其相应的衍射峰分别出现在(111)、(200)和(220)晶面,以及(201)和(202)晶面,不存在其他析出相的衍射峰. 激光熔覆沉积所用Inconel 718合金粉末的主要化学成分列于表1中. 采用数字式显微硬度计(上海泰明光学仪器有限公司HXD-1000TM)测试成形后Inconel 718合金的显微硬度,随机测量了6个位置的硬度值,得到其平均硬度值为472.6 HV,图1(d)所示为Inconel 718合金试样的硬度值.

    图  1  (a)激光熔覆沉积Inconel 718合金试样的照片;(b) Inconel 718合金试样金相组织的SEM照片;(c) Inconel 718合金试样的XRD图谱;(d) Inconel 718合金试样的硬度值
    Figure  1.  (a) Photograph of laser cladding deposition Inconel 718 alloy specimens; (b) SEM micrograph of Inconel 718 alloy specimen metallographic organization; (c) XRD patterns of specimens of Inconel 718 alloy; (d) hardness values of Inconel 718 alloy specimens
    表  1  Inconel 718合金粉末的主要化学成分
    Table  1.  Main chemical compositions of Inconel 718 alloy powder
    ElementCrNiNbMoAlTiMnSiBPCFe
    Mass fraction/%18.4853.074.863.010.330.920.18<0.01<0.0050.00430.026Bal
    下载: 导出CSV 
    | 显示表格

    试验所用设备为自主研制的多功能复合微动摩擦磨损试验机,其结构原理如图2所示. 在微动磨损试验中,选取直径为10 mm的GCr15钢球作为摩擦对偶,经过淬火处理后,其硬度值范围为800~840 HV. 激光熔覆沉积制备的Inconel 718合金块作为下试样,随着驱动装置做往复运动. 同时,切向微动磨损试验中的摩擦力被高精度力传感器精确地记录下来. 整个试验的具体参数如下:Fn=10、25和50 N (法向施加的恒定载荷);D=100和200 μm (切向微动位移);t=20~25 ℃ (试验环境温度);f=5 Hz (切向微动频率);N=10000次(微动循环次数)[20]. 经过多次试验后,选取效果最佳的一组试验结果,利用SEM (扫描电子显微镜)对试样表面和剖面磨损形貌进行分析;利用EDS (电子能谱仪)对损伤区进行微区元素成分分析;利用三维轮廓仪对试样的三维磨损形貌进行分析,并测其磨损体积.

    图  2  多功能复合微动磨损试验机原理图
    Figure  2.  Principle diagram of multifunctional composite fretting wear tester

    在微动磨损试验中,摩擦力-位移曲线(Ft-D曲线)是表征微动磨损过程重要的动力学参数,可以有效地反映材料的微动运行状态[21]. 图3所示为不同工况下的摩擦力-位移曲线. 根据微动图理论可知[22-23],当法向载荷Fn=10 N,微动位移D=100 μm时,在整个微动磨损试验中,试验得到摩擦力-位移曲线为明显的平行四边形状,这表明微动运行于完全滑移区,微动试验过程中两接触体处于完全滑移状态. 而当法向载荷Fn=25和50 N,微动位移D=100 μm时,其摩擦力-位移曲线呈现出椭圆形与平行四边形之间相互转换,这表明此时微动运行处于混合区,如图3所示. 这是因为随着法向载荷的增加,试样与摩擦副之间的接触压力增大,在微动位移不变的情况下,两者之间相对滑移更加困难. 因此,当法向载荷从10 N增加到50 N的过程中,微动运行出现了从完全滑移区向混合区的转变. 当微动位移增加至200 μm后,在法向载荷Fn=10和25 N时,试验得到摩擦力-位移曲线均呈现明显的平行四边形状,表明在此状态下微动运行处于完全滑移区. 只有在法向载荷达到50 N时,摩擦力-位移曲线才出现椭圆形与平行四边形之间相互转换的趋势.

    图  3  不同法向载荷和位移幅值下的摩擦力-位移曲线
    Figure  3.  Friction-displacement curve under different normal load and displacement amplitude

    在摩擦力-位移曲线图中,曲线所围图形的积分面积为摩擦力所做的功[24-25],即材料摩擦耗散能,如图4(a)所示,可以用来表征微动过程中材料的损伤[26]. 单个循环的耗散能(Ed)计算公式为

    图  4  微动磨损耗散能:(a)单个完整微动回路中每个参数的定义; (b)不同法向载荷和位移幅值下的耗散能
    Figure  4.  Fretting wear dissipation energy: (a) definition of each parameter in a single complete fretting loop; (b) dissipative energy under the different normal load and displacement amplitude
    $$ {E}_{\mathrm{d}}=2\left(\int_{{-\delta }_{0}}^{{{\delta }^{*}}} f{\rm{d}}\delta -\int_{{\delta }_{0}}^{{{\delta }^{*}}}f\mathrm{d}\delta \right) $$ (1)

    其中,f 表示摩擦力振幅,δ0表示微动半径,2δ* 表示位移幅值,dδ 表示位移幅值的变化量[27]. 利用上述积分公式,对微动磨损试验过程中所获得的Ft-D曲线进行积分计算,得到了其相应循环次数下的能量耗散值,结果如图4(b)所示. 由图4(b)可知,随着施加载荷和微动位移的增大,材料的耗散能明显增大. 在相同的位移幅值下,法向载荷较小时(Fn=10和25 N),材料的微动损伤较为轻微. 在此工况下,材料的弹塑性协调起到一定的作用,缓解了材料的磨损损伤,所以摩擦耗散能较小. 并且,各循环次数下对应的耗散能相差不大. 而当法向载荷增加至50 N时,由于法向载荷较大,微动磨损的前期由于磨损导致材料的严重损伤,所以初始材料耗散能较大. 而随着大量磨屑的形成和堆积,在后期试验过程中起到一定的润滑作用,从而出现耗散能降低的现象. 另外,在相同的法向载荷下,增加位移幅值至200 μm时,由于微动位移的增大,增加了试样与对偶球的接触面积,微动磨损加剧,材料损伤增大. 因此,材料的耗散能随微动位移的增加而增大[28].

    图5所示为在不同法向载荷和位移幅值下的摩擦系数曲线. 如图5所示,在不同的法向载荷作用下摩擦系数曲线随着循环次数的变化大致可以划分为上升阶段、下降阶段和平稳阶段3个阶段. 在上升阶段,随着微动磨损试验的持续进行,材料表面附着层和氧化层不断地被分解剥落,两个接触体之间发生直接接触,导致摩擦系数不断增大,并达到最大值[29]. 然后,随着磨屑的产生并起到一定的润滑作用,摩擦系数开始下降. 最后,随着磨屑的产生和排出处于1个相对平稳的状态,摩擦系数达到平稳阶段.

    图  5  不同法向载荷和位移幅值下的摩擦系数曲线
    Figure  5.  Friction coefficient curves under the different normal load and displacement amplitude

    图5(a)可知,当位移幅值D=100 μm时,摩擦系数在平稳阶段出现随着法向载荷增加而增大的现象,法向载荷为50 N时,其摩擦系数最大. 这可能是因为法向载荷的增大,使两接触体之间受力增大. 而在微动磨损过程中,两接触体之间的相对滑移变得更加困难,因此,接触载荷越大,其摩擦系数也越大. 而当位移幅值D=200 μm时,不同法向载荷作用下获得较大的初始摩擦系数. 可能是因为位移幅值增加,两接触体接触面积增大,使得初始摩擦系数增大. 但是,并没有摩擦系数随着法向载荷增加而增大的现象. 可能是因为微动磨损过程中位移幅值的增加,导致产生更多磨屑并参与到微动摩擦磨损的过程中. 因此,其摩擦系数随法向载荷的变化并没有明显的变化趋势[图5(b)].

    图6所示为不同工况下磨痕的三维形貌照片. 由图6(a)可知,在两种位移幅值下,磨痕的面积均随着法向载荷的增加而增大. 试样磨痕中心形成类椭圆形凹坑,磨痕边缘磨屑堆积物较多. 由于两接触体的相对滑动,微动磨损导致试样表面形成较大的片块状磨屑,并且在试验过程中,磨屑逐渐堆积在磨痕的边缘. 当位移幅值D=100 μm,法向载荷Fn=10和25 N时,可发现磨痕边缘有明显的磨屑堆积现象. 并且,磨屑堆积的量较法向载荷Fn=50 N时更为严重. 这一现象与摩擦系数分析时提出的法向载荷越大,磨屑更难排出的结果相一致. 因此,在法向载荷Fn=50 N时,磨痕边缘磨屑的堆积较为轻微. 不同工况下磨痕截面二维轮廓如图6(b)所示,在相同的位移幅值下,随着法向载荷的增大,磨痕的深度和宽度均逐渐增大. 另外,随着位移幅值的增加,相同法向载荷作用下磨痕的宽度和深度也明显增加. 利用三维软件磨损体积计算功能,得到磨痕的磨损体积如图6(c)所示. 由图6(c)同样可知,随着施加载荷和微动位移的增大,试样的磨损体积逐渐增大.

    图  6  不同工况下磨痕的三维形貌信息:(a)三维形貌;(b)截面轮廓;(c)磨损体积
    Figure  6.  Three-dimensional micrographs information of grinding marks under different working conditions: (a) three-dimensional morphology; (b) cross-sectional profile; (c) wear volume

    图7所示为位移幅值D=100 μm时,不同法向载荷下磨痕的SEM形貌照片. 如图7(a~c)所示,随着法向载荷的不断增大,试样的磨损面积逐渐增大. 当法向载荷Fn=10 N,微动运行处于完全滑移区时,磨痕区域出现片状剥落和磨屑,疲劳磨损和磨粒磨损为主要的磨损机制,如图7(a)所示. 同样地,由图7(b~c)可知,当法向载荷Fn=25和50 N,微动状态为混合模式时,出现裂纹的萌生和扩展现象. 磨痕表面出现龟裂的现象,磨屑在磨痕边缘堆积,其主要的磨损机制为疲劳磨损、氧化磨损和磨粒磨损. 在整个微动磨损过程中,所有磨痕边缘均堆积大量细小和密集的磨屑. 图7(a1~c1)展示了选取磨痕中不同区域的磨屑进行EDS分析的过程,相应的EDS测试结果如图7(a2~c2)所示 [30],结果表明,磨屑中均有O峰的存在,这说明微动磨损试验中出现了氧化反应,形成了氧化物磨屑,进一步说明微动磨损试验过程中氧化磨损的存在. 因此,其主要的磨损机制是疲劳磨损、磨粒磨损和氧化磨损[31-32].

    图  7  D = 100 μm,不同法向载荷下试样磨损的SEM照片和EDS测试结果:(a, a1, a2) Fn=10 N;(b, b1, b2) Fn=25 N;(c, c1, c2) Fn=50 N
    Figure  7.  SEM micrographs and EDS results of specimens wear under different normal loads at D = 100 μm: (a, a1, a2) Fn=10 N; (b, b1, b2) Fn=25 N; (c, c1, c2) Fn=50 N

    图8所示为位移幅值D=200 μm时,不同法向载荷下磨痕的SEM形貌照片. 如图8所示,试验后试样表面有明显的磨痕,磨痕区域可以观察到磨屑和明显的片状脱落现象. 并且在磨痕边缘同样发现了大量的磨屑堆积现象. 随着法向载荷的增加,磨痕区域中的剥层出现了明显的细化现象. 磨屑EDS测试结果显示,磨屑中同样存在大量的O元素,说明了微动磨损试验过程中氧化磨损的存在[33]. 其主要磨损机制为疲劳磨损、氧化磨损和磨粒磨损.

    图  8  D = 200 μm,不同法向载荷下试样磨损的SEM照片和EDS测试结果:(a, a1, a2) Fn=10 N;(b, b1, b2) Fn=25 N;(c, c1, c2) Fn=50 N
    Figure  8.  SEM micrographs and EDS results of specimens wear under different normal loads at D = 200 μm: (a, a1, a2) Fn=10 N; (b, b1, b2) Fn=25 N; (c, c1, c2) Fn=50 N

    图9所示为不同法向载荷和位移幅值下磨痕剖面的SEM形貌照片. 从图9可知,随着微动试验过程中法向载荷和位移幅值的不断增大,试样的磨损范围逐渐增大(图中黄色虚线框所示). 在位移幅值不变的条件下,当法向载荷Fn=10 N时,微动磨损较轻微. 此时,材料的损伤主要为轻微的磨损和材料的弹塑性形变调节,磨痕剖面位置未发现明显的裂纹,如图9(a1)所示. 当法向载荷Fn=25 N时,磨痕剖面次表层位置发现了明显的裂纹,如图9(b1)所示. 说明裂纹的出现导致了材料剥离,增加了材料的损伤,因此在磨痕表面可发现存在大量剥落的材料碎屑. 继续增大施加载荷至50 N时,磨痕剖面同样发现裂纹的存在,并且裂纹出现在了距离表面更深的位置,如图9(c1)所示. 主要原因是此时法向载荷较大,磨损区域受接触应力影响,深度更深. 由此可知,在微动磨损过程中,接触应力和摩擦切应力的共同作用导致材料次表面出现裂纹萌生和扩展,最终在摩擦切应力的作用下使得材料从基体上剥落[34]. 并且法向载荷越大,其接触影响深度越深,促进裂纹在距离表面更深位置萌生与扩展,加剧了材料的损伤.

    图  9  不同法向载荷和位移幅值下试样剖面的SEM照片
    Figure  9.  SEM micrographs of specimens under the different normal load and displacement amplitude

    图10所示为激光熔覆沉积Inconel 718合金微动磨损损伤演化物理模型. 首先,相同的位移幅值下,微动磨损过程中,较小的法向载荷导致材料的弹塑性变形和磨损损伤,试样的表面出现了塑性变形和疲劳磨损,表面形成较大的剥层和片块状的氧化磨屑,如图10(a)所示. 随着法向载荷的增加,较大的接触应力作用使得剥层破碎,并造成了试样表层和次表层裂纹的出现和延伸,进一步加剧了材料的磨损损伤,如图10(b)所示. 进一步增加法向载荷,磨损形成的氧化磨屑进一步碎化,最终形成微小的磨屑覆盖在磨痕表面. 并且接触应力的影响深度加深,在距离表面更深的位置出现了裂纹的萌生和扩展,并在摩擦切应力的作用下剥离基体,材料损伤明显加剧,如图10(c)所示.

    图  10  Inconel 718合金微动磨损损伤演化物理模型
    Figure  10.  Physical model of fretting wear damage evolution of Inconel 718 alloy

    利用激光熔覆沉积制备了Inconel 718合金试样,探究不同法向载荷和位移幅值作用下的微动磨损特性. 得到结论如下:

    a. 随着微动试验的持续进行,Inconel 718合金试样损伤的演变规律主要表现为初始较大的剥层和块状磨屑的出现,然后伴随着裂纹的萌生和扩展,块状磨屑的剥落并碎化,最终形成大量细小磨屑. 其主要的磨损机制为疲劳磨损、氧化磨损和磨粒磨损.

    b. 在相同的位移幅值下,随着法向载荷的不断增大,Inconel 718合金试样与GCr15钢球的运行状态由完全滑移转变成混合模式. 试样的耗散能、磨损体积和磨痕宽度与深度逐渐增大.

    c. 当法向载荷不变时,随着位移幅度值的增大,两接触体更易于发生相对滑移,Inconel 718合金材料的磨损损伤加剧.

  • 图  1   (a)激光熔覆沉积Inconel 718合金试样的照片;(b) Inconel 718合金试样金相组织的SEM照片;(c) Inconel 718合金试样的XRD图谱;(d) Inconel 718合金试样的硬度值

    Figure  1.   (a) Photograph of laser cladding deposition Inconel 718 alloy specimens; (b) SEM micrograph of Inconel 718 alloy specimen metallographic organization; (c) XRD patterns of specimens of Inconel 718 alloy; (d) hardness values of Inconel 718 alloy specimens

    图  2   多功能复合微动磨损试验机原理图

    Figure  2.   Principle diagram of multifunctional composite fretting wear tester

    图  3   不同法向载荷和位移幅值下的摩擦力-位移曲线

    Figure  3.   Friction-displacement curve under different normal load and displacement amplitude

    图  4   微动磨损耗散能:(a)单个完整微动回路中每个参数的定义; (b)不同法向载荷和位移幅值下的耗散能

    Figure  4.   Fretting wear dissipation energy: (a) definition of each parameter in a single complete fretting loop; (b) dissipative energy under the different normal load and displacement amplitude

    图  5   不同法向载荷和位移幅值下的摩擦系数曲线

    Figure  5.   Friction coefficient curves under the different normal load and displacement amplitude

    图  6   不同工况下磨痕的三维形貌信息:(a)三维形貌;(b)截面轮廓;(c)磨损体积

    Figure  6.   Three-dimensional micrographs information of grinding marks under different working conditions: (a) three-dimensional morphology; (b) cross-sectional profile; (c) wear volume

    图  7   D = 100 μm,不同法向载荷下试样磨损的SEM照片和EDS测试结果:(a, a1, a2) Fn=10 N;(b, b1, b2) Fn=25 N;(c, c1, c2) Fn=50 N

    Figure  7.   SEM micrographs and EDS results of specimens wear under different normal loads at D = 100 μm: (a, a1, a2) Fn=10 N; (b, b1, b2) Fn=25 N; (c, c1, c2) Fn=50 N

    图  8   D = 200 μm,不同法向载荷下试样磨损的SEM照片和EDS测试结果:(a, a1, a2) Fn=10 N;(b, b1, b2) Fn=25 N;(c, c1, c2) Fn=50 N

    Figure  8.   SEM micrographs and EDS results of specimens wear under different normal loads at D = 200 μm: (a, a1, a2) Fn=10 N; (b, b1, b2) Fn=25 N; (c, c1, c2) Fn=50 N

    图  9   不同法向载荷和位移幅值下试样剖面的SEM照片

    Figure  9.   SEM micrographs of specimens under the different normal load and displacement amplitude

    图  10   Inconel 718合金微动磨损损伤演化物理模型

    Figure  10.   Physical model of fretting wear damage evolution of Inconel 718 alloy

    表  1   Inconel 718合金粉末的主要化学成分

    Table  1   Main chemical compositions of Inconel 718 alloy powder

    ElementCrNiNbMoAlTiMnSiBPCFe
    Mass fraction/%18.4853.074.863.010.330.920.18<0.01<0.0050.00430.026Bal
    下载: 导出CSV
  • [1]

    Ezugwu E O. Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12–13): 1353–1367.

    [2]

    Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361–374. doi: 10.2514/1.18239

    [3]

    Amanov A. Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification[J]. Wear, 2020, 446–447: 203208.

    [4]

    Xin Long, Huang Qian, Han Yongming, et al. The damage mechanism of Alloy 690TT against Alloy 600 caused by fretting wear in room temperature pure water[J]. Materials Characterization, 2020, 161: 110176. doi: 10.1016/j.matchar.2020.110176

    [5]

    M'Saoubi R, Axinte D, Soo S L, et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals, 2015, 64(2): 557–580. doi: 10.1016/j.cirp.2015.05.002

    [6]

    Lorenzo-Martin C, Ajayi O O, Hartman K, et al. Effect of Al2O3 coating on fretting wear performance of Zr alloy[J]. Wear, 2019, 426–427: 219–227.

    [7]

    Shen M X, Xie X Y, Cai Z B, et al. An experiment investigation on dual rotary fretting of medium carbon steel[J]. Wear, 2011, 271(9–10): 1504–1514.

    [8]

    Li J, Lu Y H. Effects of displacement amplitude on fretting wear behaviors and mechanism of Inconel 600 alloy[J]. Wear, 2013, 304(1–2): 223–230.

    [9]

    Li J, Ma M, Lu Y H, et al. Evolution of wear damage in Inconel 600 alloy due to fretting against type 304 stainless steel[J]. Wear, 2016, 346–347: 15–21.

    [10]

    Jeong S H, Cho C W, Lee Y Z. Friction and wear of Inconel 690 for steam generator tube in elevated temperature water under fretting condition[J]. Tribology International, 2005, 38(3): 283–288. doi: 10.1016/j.triboint.2004.08.012

    [11]

    Zhang Xiaoyu, Liu Jianhua, Cai Zhenbing, et al. Experimental study of the fretting wear behavior of incoloy 800 alloy at high temperature[J]. Tribology Transactions, 2017, 60(6): 1110–1119. doi: 10.1080/10402004.2016.1261421

    [12]

    Attia M H, de Pannemaecker A, Williams G. Effect of temperature on tribo-oxide formation and the fretting wear and friction behavior of zirconium and nickel-based alloys[J]. Wear, 2021, 476: 203722. doi: 10.1016/j.wear.2021.203722

    [13]

    Han, Pinlian. Additive design and manufacturing of jet engine parts[J]. Engineering, 2017, 3(5): 648–652. doi: 10.1016/J.ENG.2017.05.017

    [14]

    Liu R, Wang Z, Sparks T, et al. Aerospace applications of laser additive manufacturing[M]. Amsterdam: Elsevier, 2017.

    [15]

    Lyons B. Additive manufacturing in aerospace: examples and research outlook[J]. The Bridge, 2012, 44(3): 13–19.

    [16]

    Jyothish Kumar L, Krishnadas Nair C G. Advances in 3D printing & additive manufacturing technologies[M]. Singapore: Springer, 2016.

    [17] 唐攀, 米雪, 沈平川, 等. 位移幅值对690合金管/405不锈钢块切向微动磨损特性的影响[J]. 摩擦学学报, 2020, 40(6): 754–761 doi: 10.16078/j.tribology.2020024

    Tang Pan, Mi Xue, Shen Pingchuan, et al. Effect of displacement on tangential fretting wear characteristics of 690 alloy tube/405 stainless steel plate[J]. Tribology, 2020, 40(6): 754–761 doi: 10.16078/j.tribology.2020024

    [18]

    Li Qiang, Zhang Dawei, Lei Tingquan, et al. Comparison of laser-clad and furnace-melted Ni-based alloy microstructures[J]. Surface and Coatings Technology, 2001, 137(2–3): 122–135.

    [19]

    Corbin D J, Nassar A R, Reutzel E W, et al. Effect of directed energy deposition processing parameters on laser deposited Inconel® 718: external morphology[J]. Journal of Laser Applications, 2017, 29(2): 022001. doi: 10.2351/1.4977476

    [20] 米雪, 唐攀, 沈平川, 等. 690合金管在不同法向载荷下的切向微动磨损性能研究[J]. 表面技术, 2020, 49(11): 191–197 doi: 10.16490/j.cnki.issn.1001-3660.2020.11.021

    Mi Xue, Tang Pan, Shen Pingchuan, et al. Tangential fretting wear characteristics of 690 alloy tubes under different normal force[J]. Surface Technology, 2020, 49(11): 191–197 doi: 10.16490/j.cnki.issn.1001-3660.2020.11.021

    [21]

    Ming Hongliang, Liu Xingchen, Lai Jiang, et al. Fretting wear between alloy 690 and 405 stainless steel in high temperature pressurized water with different normal force and displacement[J]. Journal of Nuclear Materials, 2020, 529: 151930. doi: 10.1016/j.jnucmat.2019.151930

    [22]

    Ming Hongliang, Liu Xingchen, Lai Jiang, et al. On the mechanisms of various fretting wear modes[J]. Tribology International, 2011, 44(11): 1378–1388. doi: 10.1016/j.triboint.2011.02.010

    [23]

    Vingsbo O, Söderberg S. On fretting maps[J]. Wear, 1988, 126(2): 131–147. doi: 10.1016/0043-1648(88)90134-2

    [24] 郑金鹏. 机械密封补偿机构丁腈橡胶/金属密封界面微动损伤行为研究[D]. 杭州: 浙江工业大学, 2015

    Zheng Jinpeng. Study on the fretting damage of nbr/metal interface of mechanical seal auxiliary components[D]. Hangzhou: Zhejiang University of Technology, 2015 (in Chinese)

    [25]

    Esteves M, Ramalho A, Ramos F. Electrical performance of textured stainless steel under fretting[J]. Tribology International, 2017, 110: 41–51. doi: 10.1016/j.triboint.2017.02.009

    [26]

    Huq M Z, Celis J P. Expressing wear rate in sliding contacts based on dissipated energy[J]. Wear, 2002, 252(5–6): 375–383.

    [27]

    Liu Xinlong, Cai, Zhenbing, Xiao Qian, et al. Fretting wear behavior of brass/copper-graphite composites as a contactor material under electrical contact[J]. International Journal of Mechanical Sciences, 2020, 184: 105703. doi: 10.1016/j.ijmecsci.2020.105703

    [28]

    Fantetti A, Tamatam L R, Volvert M, et al. The impact of fretting wear on structural dynamics: experiment and Simulation[J]. Tribology International, 2019, 138: 111–124. doi: 10.1016/j.triboint.2019.05.023

    [29]

    Yue T Y, Wahab M A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International, 2017, 107: 274–282. doi: 10.1016/j.triboint.2016.11.044

    [30]

    Park C, Kim J, Sim A, et al. Influence of diode laser heat treatment and wear conditions on the fretting wear behavior of a mold steel[J]. Wear, 2019, 434–435: 202961.

    [31] 周明琢, 张耕培, 卢文龙, 等. 桨-毂轴承材料扭动微动磨损行为研究[J]. 中国机械工程, 2017, 28(23): 2785–2791 doi: 10.3969/j.issn.1004-132X.2017.23.003

    Zhou Mingzhuo, Zhang Gengpei, Lu Wenlong, et al. Research on torsional fretting wear behaviors of material in hub bearings[J]. China Mechanical Engineering, 2017, 28(23): 2785–2791 doi: 10.3969/j.issn.1004-132X.2017.23.003

    [32]

    Zhang Po, Zeng Liangcai, Mi Xue, et al. Comparative study on the fretting wear property of 7075 aluminum alloys under lubricated and dry conditions[J]. Wear, 2021, 474–475: 203760.

    [33] 王文秀. 690合金管在干态不同温度下的线接触切向微动磨损研究[D]. 成都: 西南交通大学, 2014

    Wang Wenxiu. Researches on tangential fretting wear of Alloy690Tubes with line contact in the dry and different temperature state[D]. Chengdu: Southwest Jiaotong University, 2014 (in Chinese)

    [34]

    Yuan Xinlu, Li, Gen, Zhang Xiaoyu, et al. An experimental investigation on fretting wear behavior of copper-magnesium alloy[J]. Wear, 2020, 462–463: 203497.

  • 期刊类型引用(5)

    1. 李波,黄杰,杨韬,曹鑫科,蔡晓君,彭金方,朱旻昊. 20Cr13不锈钢高温微动摩擦磨损特性研究. 摩擦学学报(中英文). 2024(04): 494-508 . 百度学术
    2. 胡勇,张旭,贾慧斌,王少辉,柴利强. SLM成形IN738LC合金的微动磨损行为及磨损机理. 中国有色金属学报. 2024(04): 1393-1404 . 百度学术
    3. 张佳美,贾磊,邢志国,吕振林. 载流滑动摩擦部件表面失效及其修复技术研究进展. 摩擦学学报(中英文). 2024(05): 696-714 . 百度学术
    4. 尹美贵,张磊,尹海燕. 超声表面滚压工艺影响镍基690合金冲-切磨损行为的研究. 摩擦学学报(中英文). 2024(07): 985-995 . 百度学术
    5. 贺继樊,金津,刘建华,彭金方,朱旻昊. 不同温度对Inconel 718合金微动磨损行为的影响研究. 材料保护. 2024(10): 1-10+26 . 百度学术

    其他类型引用(2)

图(10)  /  表(1)
计量
  • 文章访问数:  639
  • HTML全文浏览量:  52
  • PDF下载量:  102
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-03-28
  • 录用日期:  2022-03-31
  • 网络出版日期:  2023-04-16
  • 发布日期:  2022-04-07
  • 刊出日期:  2023-05-28

目录

/

返回文章
返回