ISSN   1004-0595

CN  62-1224/O4

高级检索

双级孔含油轴承油压扩散与表面渗析特性分析

张国涛, 蔡伟杰, 尹延国, 韦习成

张国涛, 蔡伟杰, 尹延国, 韦习成. 双级孔含油轴承油压扩散与表面渗析特性分析[J]. 摩擦学学报, 2023, 43(5): 549-560. DOI: 10.16078/j.tribology.2021313
引用本文: 张国涛, 蔡伟杰, 尹延国, 韦习成. 双级孔含油轴承油压扩散与表面渗析特性分析[J]. 摩擦学学报, 2023, 43(5): 549-560. DOI: 10.16078/j.tribology.2021313
ZHANG Guotao, CAI Weijie, YIN Yanguo, WEI Xicheng. Oil Pressure Diffusion and Seepage Characteristics of Two-Stage Porous Bearing[J]. TRIBOLOGY, 2023, 43(5): 549-560. DOI: 10.16078/j.tribology.2021313
Citation: ZHANG Guotao, CAI Weijie, YIN Yanguo, WEI Xicheng. Oil Pressure Diffusion and Seepage Characteristics of Two-Stage Porous Bearing[J]. TRIBOLOGY, 2023, 43(5): 549-560. DOI: 10.16078/j.tribology.2021313
张国涛, 蔡伟杰, 尹延国, 韦习成. 双级孔含油轴承油压扩散与表面渗析特性分析[J]. 摩擦学学报, 2023, 43(5): 549-560. CSTR: 32261.14.j.tribology.2021313
引用本文: 张国涛, 蔡伟杰, 尹延国, 韦习成. 双级孔含油轴承油压扩散与表面渗析特性分析[J]. 摩擦学学报, 2023, 43(5): 549-560. CSTR: 32261.14.j.tribology.2021313
ZHANG Guotao, CAI Weijie, YIN Yanguo, WEI Xicheng. Oil Pressure Diffusion and Seepage Characteristics of Two-Stage Porous Bearing[J]. TRIBOLOGY, 2023, 43(5): 549-560. CSTR: 32261.14.j.tribology.2021313
Citation: ZHANG Guotao, CAI Weijie, YIN Yanguo, WEI Xicheng. Oil Pressure Diffusion and Seepage Characteristics of Two-Stage Porous Bearing[J]. TRIBOLOGY, 2023, 43(5): 549-560. CSTR: 32261.14.j.tribology.2021313

双级孔含油轴承油压扩散与表面渗析特性分析

基金项目: 国家自然科学基金(52005005, 51575151)和安徽省自然科学基金(1908085QE195)资助.
详细信息
  • 中图分类号: TH117.1

Oil Pressure Diffusion and Seepage Characteristics of Two-Stage Porous Bearing

Funds: This project was supported by the National Natural Science Foundation of China (52005005, 51575151) and Anhui Natural Science Foundation (1908085QE195).
More Information
    Corresponding author:

    ZHANG Guotao: E-mail: hfutt@sina.com, Tel: +86-15375283582

  • 摘要:

    为探究含油轴承基体渗流及压力扩散对接触面间油膜润滑性能的影响,建立双级孔含油轴承系统的渗流润滑模型,研究轴承摩擦面上油膜分布规律与双级孔隙中压力扩散行为,分析摩擦副倾角与轴承表层渗透率变化对油膜润滑性能的影响. 结果表明,流体动压力产生于摩擦界面的收敛区,并逐渐由摩擦界面向轴承基体扩散,在油压扩散过程中流体压力的作用面积增大,压力数值降低. 油膜的润滑性能随倾角增大或表层渗透率减小而得到改善,相比单层含油轴承,具有致密表层的双级孔含油轴承具有较好的润滑性能. 不同表层渗透率下,倾角对油膜摩擦系数的影响差异显著:在本文中计算参数下,当表层渗透率小于7×10−15 m2时,油膜的摩擦系数随倾角增大而减小;当表层渗透率高于7×10−15 m2时,油膜的摩擦系数随倾角增大而增大. 倾角和表层渗透率影响含油轴承基体中的油液渗流和压力扩散行为,最终使油膜的润滑性能发生改变. 研究工作为明晰含油轴承润滑机理提供一定理论依据.

    Abstract:

    Oil bearing is usually prepared by powder metallurgy process, which has the characteristics of self-lubrication, lightweight and near net shape forming. It has significant technical advantages in the current situation of mechanical products pursuing high performance, low energy consumption and environmental friendliness. For exploring the influence of seepage and pressure diffusion on the oil film lubrication performance of oil bearing, the seepage lubrication model of two-stage hole oil bearing system was established. The oil film distribution on the friction surface and the pressure diffusion behavior in the two-stage hole were studied. The effects of the variable obliquity and surface permeability on the oil film lubrication performance were analyzed. The main purpose of the study was to reveal the interaction between fluid seepage and pressure diffusion in two-stage porous structure. Results showed that the hydrodynamic pressure was generated in the convergence zone of the friction face. From the friction face to the bottom of the bearing, the fluid pressure gradually diffused to the matrix, the pressure action area increased and the pressure value decreased during the oil pressure diffusion process. The lubrication performance of oil film became better with the increase of obliquity or the decrease of surface permeability. Reducing the surface permeability could decrease the seepage and diffusion effect of oil into the porous matrix in the oil film area, which was conducive to increasing the hydrodynamic pressure of oil film on the friction interface. The lubrication performance of two-stage oil bearing with dense surface was better than that of single-layer oil bearing. Under different surface permeability, the effect of obliquity on friction coefficient was significantly different. Under the calculation parameters in this paper, when the surface permeability was less than 7 ×10−15 m2, the friction coefficient decreased with the increase of obliquity. While when the surface permeability was higher than 7 ×10−15 m2, the friction coefficient increased with the increase of the obliquity. At lower surface permeability, the hydrodynamic pressure of oil film between friction interfaces increased with the increase of the obliquity. And the lubrication performance became better. At the same time, the seepage and pressure diffusion effects of oil film into the pores of bearing matrix were enhanced, which would hinder the improvement trend of the lubrication performance to a certain extent. When the surface permeability reached a certain value, the bearing capacity of the oil film hardly changed with the increase of the obliquity, and the friction coefficient of the oil film increased with the increase of the obliquity. Under different obliquity and surface permeability, the seepage behavior of oil in porous bearing interacted with pressure diffusion, and finally changed the lubrication performance of oil film. The research provided a theoretical basis for clarifying the lubrication mechanism of oil bearing.

  • 图  1   环面接触摩擦副运动形式

    Figure  1.   Schematic diagram of ring-face contact oil bearing system

    图  2   含油轴承渗流润滑模型的计算程序框图

    Figure  2.   Calculation program diagram of seepage lubrication model of oil bearing

    图  3   环面摩擦副系统中的油膜厚度与压力分布:(a)油膜厚度;(b)摩擦面上压力分布;(c)层间界面上压力分布;(d)轴承底面上压力分布

    Figure  3.   Oil film thickness and pressure distribution in toroidal friction pair system: (a) oil film thickness; (b) pressure distribution on friction face; (c) pressure distribution on interlayer face; (d) pressure distribution on bottom face

    图  4   倾角作用下三个层面上的无量纲压力分布:(a)摩擦界面上无量纲压力沿周向的分布;(a')摩擦界面上无量纲压力沿径向的分布;(b)层间界面上无量纲压力沿周向的分布;(b')层间界面上无量纲压力沿径向的分布;(c)轴承底面上无量纲压力沿周向的分布;(c')轴承底面上无量纲压力沿径向的分布

    Figure  4.   Dimensionless pressure distribution on three layers under obliquity: (a) distribution of dimensionless pressure along the circumferential direction on the friction interface; (a') radial distribution of dimensionless pressure on friction interface; (b) distribution of dimensionless pressure along the circumferential direction at the interlayer interface; (b') radial distribution of dimensionless pressure at interlayer interface; (c) distribution of dimensionless pressure along the circumferential direction on the bottom surface of bearing; (c') radial distribution of dimensionless pressure on the bottom surface of bearing

    图  5   两种渗透率下环面摩擦副系统的油膜承载能力和摩擦系数随倾角变化:(a) k1=1×10−14 m2, k2=1×10−13 m2;(b) k1=1×10−16 m2, k2=1×10−13 m2

    Figure  5.   Oil film carrying capacity and friction coefficient of ring friction pair system vary with inclination at two permeabilities: (a) k1=1×10−14 m2, k2=1×10−13 m2; (b) k1=1×10−16 m2, k2=1×10−13 m2

    图  6   表层渗透率作用下三个层面上的无量纲压力分布:(a)摩擦界面上无量纲压力沿周向的分布;(a')摩擦界面上无量纲压力沿径向的分布;(b)层间界面上无量纲压力沿周向的分布;(b')层间界面上无量纲压力沿径向的分布;(c)轴承底面上无量纲压力沿周向的分布;(c')轴承底面上无量纲压力沿径向的分布

    Figure  6.   Dimensionless pressure distribution at three levels under surface permeability: (a) distribution of dimensionless pressure along the circumferential direction on the friction interface; (a') radial distribution of dimensionless pressure on friction interface; (b) distribution of dimensionless pressure along the circumferential direction at the interlayer interface; (b') radial distribution of dimensionless pressure at interlayer interface; (c) distribution of dimensionless pressure along the circumferential direction on the bottom surface of bearing; (c') radial distribution of dimensionless pressure on the bottom surface of bearing

    图  7   层间界面及轴承底面上圆心部压力随渗透率的变化

    Figure  7.   Variation of pressure at the center of the circle on the interlayer interface and bearing bottom face with permeability

    图  8   不同表层渗透率作用油膜的承载能力和摩擦系数:(a)承载能力;(b)摩擦系数

    Figure  8.   Loading capacity and friction coefficient of oil film under different surface permeability: (a) load capacity; (b) friction coefficient

    图  9   不同倾角作用下环-面摩擦副间的法向渗析速度

    Figure  9.   Normal dialysis velocity between ring-face friction pairs at different inclination angles

    图  10   不同倾角作用下摩擦界面上的无量纲法向速度:(a)法向速度沿周向的分布;(b)法向速度沿径向的分布

    Figure  10.   Dimensionless normal velocity at friction face under different inclination angles: (a) circumferential distribution of normal velocity; (b) radial distribution of normal velocity

    图  11   不同表层渗透率作用下环-面摩擦副间的法向渗析速度

    Figure  11.   Normal dialysis rate between ring-surface friction pairs under different surface permeability

    图  12   表层渗透率作用下摩擦界面上的无量纲法向速度:(a)法向速度沿周向的分布;(b)法向速度沿径向的分布

    Figure  12.   Dimensionless normal velocity at friction interface under surface permeability: (a) circumferential distribution of normal velocity; (b) radial distribution of normal velocity

    图  13   倾角和表层渗透率影响下含油轴承油液渗流和润滑模型

    Figure  13.   Oil seepage and lubrication model in porous bearing affected by inclination and surface permeability

  • [1] 谭新峰, 雒建斌. 润滑研究进展[J]. 中国机械工程, 2020, 31(2): 145–174,189 doi: 10.3969/j.issn.1004-132X.2020.02.003

    Tan Xinfeng, Luo Jianbin. Research advances of lubrication[J]. China Mechanical Engineering, 2020, 31(2): 145–174,189 doi: 10.3969/j.issn.1004-132X.2020.02.003

    [2]

    Bhattacharjee B, Chakraborti P, Choudhuri K. Theoretical investigation of porous hydrostatic journal bearing under micropolar fluid lubrication[J]. Proceedings of the Institution of Mechanical Engineers, 2020, 234(1–2): 11–18.

    [3]

    Patela S J, Deherib G M. Ferrofluid lubrication of a double layer porous rough slider bearing[J]. International Journal of Applied Science and Engineering, 2018, 15(1): 1–15.

    [4]

    Wang Jingqiu, Zhao, Huajun, Huang Wei, et al. Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication[J]. Wear, 2017, 380–381: 52–58.

    [5]

    Gbehe O S T, Khlifi M, Nabhani M, et al. Numerical modeling of poro-elasticity effects on squeeze film of parallel plates using homogenization method[J]. Tribology International, 2016, 102: 70–78. doi: 10.1016/j.triboint.2016.05.025

    [6]

    Chen Wenbin, Zhu Pengzhe, Liang He, et al. Molecular dynamics simulations of lubricant recycling in porous polyimide retainers of bearing[J]. Langmuir, 2021, 37(7): 2426–2435. doi: 10.1021/acs.langmuir.0c03468

    [7]

    Eder S J, Ielchici C, Krenn S, et al. An experimental framework for determining wear in porous journal bearings operated in the mixed lubrication regime[J]. Tribology International, 2018, 123: 1–9. doi: 10.1016/j.triboint.2018.02.026

    [8]

    Sharma S C, Singh A. Behavior of conical porous hybrid journal bearing with pseudoplastic lubricant[J]. Tribology Transactions, 2021, 64(3): 413–433. doi: 10.1080/10402004.2020.1850958

    [9]

    Shah R C, Patel N I, Kataria R C. Some porous squeeze film-bearings using ferrofluid lubricant: a review with contributions[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230(9): 1157–1171. doi: 10.1177/1350650116629096

    [10] 张国涛, 史英康, 童宝宏, 等. 含油轴承表面供油行为与自润滑机理分析[J]. 摩擦学学报, 2022, 42(5): 1063–1070 doi: 10.16078/j.tribology.2021177

    Zhang Guotao, Shi Yingkang, Tong Baohong, et al. Analysis of the oil supply behavior and self-lubrication mechanism of the oil-bearing surface[J]. Tribology, 2022, 42(5): 1063–1070 doi: 10.16078/j.tribology.2021177

    [11]

    Yang Chang, Jiang Pan, Qin, Hongling, et al. 3D printing of porous polyimide for high-performance oil impregnated self-lubricating[J]. Tribology International, 2021, 160: 107009. doi: 10.1016/j.triboint.2021.107009

    [12] 张国涛, 尹延国. 复层孔隙分布含油轴承的孔道渗流及润滑机制[J]. 中国科学:技术科学, 2019, 49(08): 961–970 doi: 10.1360/N092018-00436

    Zhang Guotao, Yin Yanguo. Seepage flow and lubrication mechanism of oil-bearing with bilayer pore distribution[J]. Scientia Sinica Technologica, 2019, 49(08): 961–970 doi: 10.1360/N092018-00436

    [13]

    Zhu, Z H, Nathan R, Wu Q H. Multi-scale soft porous lubrication[J]. Tribology International, 2019, 137: 246–253. doi: 10.1016/j.triboint.2019.05.003

    [14] 张国涛, 童宝宏, 尹延国等. 环面接触复层多孔轴承热流体动压润滑性能及生/传热机制分析[J]. 机械工程学报, 2019, 55(21): 98–107 doi: 10.3901/JME.2019.21.098

    Zhang Guotao, Tong Baohong, Yin Yanguo, et al. Analysis of thermo-hydrodynamic lubrication performance and heat generating/transfer mechanism of ring-face contact bilayer oil bearing[J]. Journal of Mechanical Engineering, 2019, 55(21): 98–107 doi: 10.3901/JME.2019.21.098

    [15]

    Rao T V V L N, Rani A M A, Awang M, et al. Stability analysis of double porous and surface porous layer journal bearing[J]. Tribology-Materials, Surfaces & Interfaces, 2016, 10(1): 19–25. doi: 10.1080/17515831.2015.1123350

    [16]

    Singh A, Sharma S C. Analysis of a double layer porous hybrid journal bearing considering the combined influence of wear and non-Newtonian behaviour of lubricant[J]. Meccanica, 2021, 56(1): 73–98. doi: 10.1007/s11012-020-01259-2

    [17]

    Zhang Guotao, Tong Baohong, Yin Yanguo. Temperature distribution and heat generating/transfer mechanism of the circular bilayer porous bearing for thermo-hydrodynamic problem[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119134. doi: 10.1016/j.ijheatmasstransfer.2019.119134

    [18]

    Hanawa N, Kuniyoshi M, Miyatake M, et al. Static characteristics of a water-lubricated hydrostatic thrust bearing with a porous land region and a capillary restrictor[J]. Precision Engineering, 2017, 50: 293–307. doi: 10.1016/j.precisioneng.2017.06.002

  • 期刊类型引用(1)

    1. 李学萍,孟祥铠,韩丽云,赵文静,彭旭东. 分部式多孔质T型槽机械密封耦合模型与性能分析. 摩擦学学报(中英文). 2025(02): 242-252 . 百度学术

    其他类型引用(0)

图(13)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  47
  • PDF下载量:  60
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-03-16
  • 录用日期:  2022-03-23
  • 网络出版日期:  2023-04-11
  • 发布日期:  2022-03-28
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回
    x 关闭 永久关闭