Electrical Contact Fretting Wear Behavior of Copper/Brass under Different Oxygen Content
-
摘要:
电连接器常因接触界面磨损发生严重失效,因此有必要研究电接触模式下的微动磨损行为。本文中基于电接触模式和不同环境含氧量(即氧气体积分数分别为10%、20%和30%,后文统一称作10%O2、20%O2和30%O2环境),着重研究含氧量对紫铜/黄铜微动磨损行为与磨损机制的影响。研究发现:10%O2、20%O2和30%O2环境时所对应的摩擦系数稳定值分别为0.77、0.71和0.80,摩擦耗散能和磨损体积的结果变化趋势一致,即10%O2环境下最高,20%O2最低,30%O2介于两者之间,可以推测,含氧量最低条件时的损伤比含氧量高时更严重。通过电接触寿命可以看出, 20%O2环境中电接触性能最优,10%O2次之,30%O2最差,不同含氧量时的微动磨损区均发生不同程度的氧化,理论上含氧量越高氧化现象越严重,但10%O2时的抗微动磨损性能最差,30%O2时的电接触性能最差,而类大气含氧量的20%O2环境时的电接触性能和抗磨损性能最佳。结果表明:电接触性能与环境含氧量存有非线性依赖关系,30%O2的环境中氧化最严重,微观形貌为尺寸粗大和团聚状的氧化颗粒,导致其接触电阻高于其余两种含氧量时;而在10%O2环境中,因微动产生的磨屑多,新鲜的磨屑松散覆盖在磨痕区域,极易与氧气发生氧化反应,使其接触电阻高于20%O2环境,但是低于30%O2时,说明环境中含氧量和微动产生的磨屑协同主导铜电接触性能与磨损行为,结合白光干涉、扫描电镜和电子探针等微观分析结果发现,在不同含氧量环境下的铜磨损机制主要表现为氧化、材料转移和剥落。
Abstract:The contact interface of electrical connector often occurs serious failures due to wear, so it is necessary to study the fretting wear behavior in electrical contact mode. Based on the difference of ambient oxygen concentration (10%, 20%, 30%) in electrical contact mode, this paper focused on the effect of oxygen concentration on fretting wear behavior and wear mechanism of copper/brass. It indicated that the stable values of friction coefficient corresponding to oxygen content of 10%O2, 20%O2 and 30%O2 in the environment were 0.77, 0.71 and 0.80, respectively. The result of friction dissipation energy was consistent with that of wear volume, i.e. the highest in 10%O2 environment, the second in 30%O2 environment, the lowest in 20%O2 environment. It can be inferred that the damage under the condition of lowest oxygen content was more serious than that under the condition of high oxygen content. It can be seen from the electrical contact life that the electrical contact performance was the best with 20%O2, the second with 10%O2 and the worst with 30%O2.The fretting wear zone was oxidized in varying degrees under different oxygen concentrations, theoretically, the more sufficient the oxygen content, the more serious the oxidation. Among them, the fretting wear resistance was the worst in 10%O2 environment and the electrical contact performance was the worst in 30%O2 environment; while the electrical contact performance and wear resistance were the best 20%O2 environment. The results showed that there was a nonlinear dependence between the electrical contact performance and the oxygen concentration in the atmosphere. The oxidation wear was the most serious at 30% oxygen concentration, the microstructure was coarse and agglomerated oxide particles which resulted in the higher contact resistance than the other two oxygen concentrations. However, more debris induced by fretting wear was easy to be oxidized at lower concentration with 10%, so the contact resistance was higher than oxygen concentration with 20% and less than oxygen concentration with 30%, the fresh wear debris was loosely covered in the wear scar indicating that the oxygen content and wear debris dominated jointly the electrical contact performance and wear behavior of copper. Combined with the results of white-light interferometry, scanning electron microscope and electron probe microanalysis, it was found that the wear mechanisms under different oxygen concentrations were mainly oxidation, material transfer and delamination.
-
图 1 试验示意图:(a)电接触微动磨损试验装置示意图(1. 压电陶瓷驱动装置;2. 上夹具;3. 力传感器;4. 样品;5. 位移传感器;6. 精密丝杠);(b)气氛装置;(c)四线接触法测量接触电压
Figure 1. Schematic of the wear tes: (a) Schematic diagram of electrical contact fretting wear test device (1. piezoelectric ceramic actuator; 2. upper fixture; 3. force transducer; 4. sample; 5. displancement sensor; 6. precision lead screw); (b) Atmosphere device; (c) Resistance measurement principle
表 1 试验材料性能
Table 1 Test material properties
Material Size
/mmResistivity/(10−8 Ω·m) Density
/(g/cm3)Hardness
/HV0.1Yield strength/MPa Elastic modulus/GPa Linear expansivity Poisson's ratio Copper 30×10×10 1.75 8.96 102 258.646 100 16.6 0.37 Brass Ф5 6.42 8.50 150 239.689 110 12 0.33 表 2 不同含氧量环境中的摩擦耗散能
Table 2 Friction dissipation energy in different oxygen content environment
Oxygen content Ei/μJ 10 1×102 5×102 1×103 2×103 5×103 10%O2 270 275 385 323 280 300 20%O2 130 203 273 278 260 314 30%O2 165 226 241 306 270 364 -
[1] Braunovic M, Konchits V V, Myshkin N K. Electrical contacts fundamentals, applications and technology[M]. London: CRC Press, 2006.
[2] 陈文华, 潘骏, 卢献彪, 等. 航天电连接器的振动可靠性建模[J]. 宇航学报, 2003, 24(1): 78–81 doi: 10.3321/j.issn:1000-1328.2003.01.015 Chen Wenhua, Pan Jun, Lu Xianbiao, et al. Reliability modeling of electrical connectors under vibration stress[J]. Journal of Astronautics, 2003, 24(1): 78–81 doi: 10.3321/j.issn:1000-1328.2003.01.015
[3] 谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 39(5): 656–668 doi: 10.16078/j.tribology.2019025 Xie Bohua, Ju Pengfei, Ji Li, et al. Research progress on tribology of electrical contact materials[J]. Tribology, 2019, 39(5): 656–668 doi: 10.16078/j.tribology.2019025
[4] Noh H J, Kim J W, Lee S M, et al. Effect of grain size on the electrical failure of copper contacts in fretting motion[J]. Tribology International, 2017, 111: 39–45. doi: 10.1016/j.triboint.2017.02.043
[5] 任万滨, 王鹏, 马晓明, 等. 微动诱发的触点电接触间歇失效现象研究[J]. 摩擦学学报, 2013, 33(4): 382–387 doi: 10.16078/j.tribology.2013.04.015 Ren Wanbin, Wang Peng, Ma Xiaoming, et al. Intermittency phenomenon of electrical contacts induced by fretting behavior[J]. Tribology, 2013, 33(4): 382–387 doi: 10.16078/j.tribology.2013.04.015
[6] Sung I H, Kim J W, Noh H J, et al. Effect of displacement and humidity on contact resistance of copper electrical contacts[J]. Tribology International, 2016, 95: 256–261. doi: 10.1016/j.triboint.2015.11.027
[7] Kong Z G, Swingler J. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors[J]. Progress in Natural Science: Materials International, 2017, 27(3): 385–390. doi: 10.1016/j.pnsc.2017.04.018
[8] Liu Xinlong, Cai Zhenbing, Liu Shanbang, et al. Influence of wear test parameters on the electrical contact performance of brass alloy/copper contactors under fretting wear[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 817–827. doi: 10.1007/s11665-018-3821-9
[9] 卢铜钢, 刘峰, 高翔, 等. 洛伦兹力与温度场作用下枢轨摩擦磨损特性[J]. 摩擦学学报, 2021, 41(4): 474–483 doi: 10.16078/j.tribology.2020148 Lu Tonggang, Liu Feng, Gao Xiang, et al. Wear characteristics between aramture and rails under the action of Lorentz force and temperature field[J]. Tribology, 2021, 41(4): 474–483 doi: 10.16078/j.tribology.2020148
[10] 刘新龙, 蔡振兵, 刘善邦, 等. 温度对镍和铜电接触微动性能的影响[J]. 中国有色金属学报, 2018, 28(5): 944–954 doi: 10.19476/j.ysxb.1004.0609.2018.05.11 Liu Xinlong, Cai Zhenbing, Liu Shanbang, et al. Effect of elevated temperature on fretting wear of nickel and copper under electric contact[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(5): 944–954 doi: 10.19476/j.ysxb.1004.0609.2018.05.11
[11] He Liping, Cai Zhenbing, Peng Jinfang, et al. Effects of oxidation layer and roughness on the fretting wear behavior of copper under electrical contact[J]. Materials Research Express, 2020, 6(12): 1265e3. doi: 10.1088/2053-1591/ab5aaf
[12] Liu Xinlong, Cai Zhenbing, Liu Shanbang, et al. Effect of roughness on electrical contact performance of electronic components[J]. Microelectronics Reliability, 2017, 74: 100–109. doi: 10.1016/j.microrel.2017.05.024
[13] Umemura S, Aoki T. Effects of CO2 atmosphere on contact resistance characteristics of noble metal contacts[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(2): 258–265. doi: 10.1109/33.142903
[14] Neufeld C N, Rieder W F. Carbon contamination of contacts due to organic vapors[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1995, 18(2): 399–404. doi: 10.1109/95.390323
[15] 臧春艳, 何俊佳, 李劲, 等. 密封继电器接触电阻与表面膜研究[J]. 中国电机工程学报, 2008, 28(31): 125–130 doi: 10.3321/j.issn:0258-8013.2008.31.020 Zang Chunyan, He Junjia, Li Jin, et al. Contact resistance and surface film of sealed relay contacts[J]. Proceedings of the CSEE, 2008, 28(31): 125–130 doi: 10.3321/j.issn:0258-8013.2008.31.020
[16] Song J, Yuan H M, Schinow V. Fretting corrosion behavior of electrical contacts with tin coating in atmosphere and vacuum[J]. Wear, 2019, 426–427: 1439–1445
[17] Toshihiro A, Yasuhisa N, Toshifumi S. Suppression of contactactivation by oxygen gas[C]. Proceedings of the 17th international conference on electrical contacts, Nagoya, Japan, 1994.
[18] 刘文轩, 廖园, 焦琳, 等. 触头材料及环境气氛对高压直流触头接触电阻影响的试验研究[J]. 电工材料, 2019(6): 16–19 doi: 10.16786/j.cnki.1671-8887.eem.2019.06.004 Liu Wenxuan, Liao Yuan, Jiao Lin, et al. The experimental study on contact resistanceunder different contact materials and surrounding atmospheresin HVDC[J]. Electrical Engineering Materials, 2019(6): 16–19 doi: 10.16786/j.cnki.1671-8887.eem.2019.06.004
[19] Liu Xinlong, Cai Zhenbing, Cui Ye, et al. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear[J]. Journal of Physics D: Applied Physics, 2018, 51(15): 155302. doi: 10.1088/1361-6463/aab30d
[20] Grandin M, Wiklund U. Wear phenomena and tribofilm formation of copper/copper-graphite sliding electrical contact materials[J]. Wear, 2018, 398–399: 227–235.
[21] Mengotti E, Duarte L I, Pippola J, et al. Fretting corrosion: analysis of the failure mechanism for low voltage drives applications[J]. Microelectronics Reliability, 2014, 54(9-10): 2109–2114. doi: 10.1016/j.microrel.2014.07.153
[22] 周仲荣, Leo Vincent. 微动磨损[M]. 北京: 科学出版社, 2002 Zhou Zhongrong, Leo Vincent. Fretting wear[M]. Beijing: Science Press, 2002 (in Chinese)
[23] 周仲荣, 朱旻昊. 复合微动磨损[M]. 上海: 上海交通大学出版社, 2004 Zhou Zhongrong, Zhu Minhao. Compound fretting wear[M]. Shanghai: Shanghai Jiaotong University Press, 2004 (in Chinese)
[24] Ren Wanbin, Wang Peng, Song Jian, et al. Effects of current load on wear and fretting corrosion of gold-plated electrical contacts[J]. Tribology International, 2014, 70: 75–82. doi: 10.1016/j.triboint.2013.09.024
[25] 李薰, 骆继勋. 铜在200-900 ℃的氧化[J]. 金属学报, 1965, 1(3): 311–318, 419-420 Li Xun, Luo Jixun. The oxidation of copper at 200-900 ℃[J]. Acta Metallrugica Sinica, 1965, 1(3): 311–318, 419-420
[26] 江泽琦, 方建华, 陈飞, 等. 摩擦电物理和摩擦电化学机理的研究进展[J]. 摩擦学学报, 2017, 37(5): 695–706 doi: 10.16078/j.tribology.2017.05.018 Jiang Zeqi, Fang Jianhua, Chen Fei, et al. Research progress on tribo-electrophysical and tribo-electrochemical mechanisms[J]. Tribology, 2017, 37(5): 695–706 doi: 10.16078/j.tribology.2017.05.018
[27] 樊文欣, 郭佩剑, 原霞, 等. 载荷和转速对铜合金材料摩擦磨损性能的影响[J]. 摩擦学学报, 2021, 41(6): 821–832 doi: 10.16078/j.tribology.2020186 Fan Wenxin, Guo Peijian, Yuan Xia, et al. Effects of load and speed on the friction and wear properties of copper alloys[J]. Tribology, 2021, 41(6): 821–832 doi: 10.16078/j.tribology.2020186
[28] 熊党生, 李溪滨. 氧化磨损与氧化物润滑[J]. 粉末冶金材料科学与工程, 1996, 1(1): 49–57 Xiong Dangsheng, Li Xibin. Oxidation wear and oxide lubrication[J]. Materials Science and Engineering of Powder Metallargy, 1996, 1(1): 49–57