-
摘要: 利用液滴冲蚀试验装置,开展了泡沫镍/聚氨酯双连续复合材料和纯聚氨酯的液滴冲蚀试验研究,并采用PIV系统,测量了液滴冲蚀中液滴速度和直径. 结果表明:随着冲击能量的增加,复合材料表现出比纯聚氨酯更好的抗液滴冲蚀性能;泡沫镍结构参数对复合材料的液滴冲蚀行为有重要影响,泡沫镍孔径越小、体密度越大,复合材料的抗冲蚀能力越强;密集的金属骨架能有效阻挡高速液滴的破坏作用,并为树脂基体提供较强的阴影保护效应和地毯保护效应,显著提高复合材料的抗冲蚀性能.Abstract: The Ni foam/polyurethane(PU) co-continuous composites (100PPI 0.8/PU, 50PPI 2.3/PU, 50PPI 1.3/PU, 50PPI 0.5/PU, 25PPI 1.7/PU and 25PPI 0.8/PU) were prepared by vacuum feeding method. The different co-continuous composites were named after pore size, volume density of the Ni foams with PU. According to ASTM standard G73-98, the high-speed droplet erosion device was purchased and modified. The plunger pump fed water into the pipeline, and the nozzle obtained liquid flow of different flow rates by adjusting the diverter valve. When the liquid flow was ejected from the nozzle, it was constrained by two parallel walls, and it scattered in a fan shape. The three test conditions of pipeline pressure 6.9 MPa, 8.3 MPa, 10.3 MPa for 30 min were chosen to conduct droplet erosion tests on the composites and pure PU. The PIV (particle image velocimetry) system was used to measure the velocity and size of the droplets. The PIV system was mainly composed of a laser generator, a camera, a synchronization controller and a computer. The laser generator emitted two slender, vertical laser beams, hitting the droplets below the nozzle. The synchronization controller enabled the camera to capture images and get two photos. Knowing the time interval of the two lasers and comparing the overall movement distance of the particles in the two photos, the velocity of the droplets could be calculated by the software Insight 4G. At the same time, the software Insight 4G recognized the droplet particles in the photo and could measure the droplet size. Under 6.9 MPa pipeline pressure, the droplet velocity was about 70 m/s, the flow rate was 5.870 L/min, and the average droplet diameter was 480 μm; under 8.3 MPa pipeline pressure, the droplet velocity was about 90 m/s, the flow rate was 6.264 L/min, and the average droplet diameter was 512 μm; under 10.3 MPa pipeline pressure, the droplet velocity was about 115 m/s, the flow rate was 6.814 L/min, and the average droplet diameter was 543 μm. The higher the pipeline pressure was, the higher the flow rate was, the higher the droplet velocity was, and the higher percentage of large droplets in the total number of droplets was. When the pipeline pressure increased, the speed of the droplets increased, the size of the droplets increased, the total number of droplets per unit time increased, and the impact frequency of the droplets also increased. Therefore, as the pipeline pressure increased, the impact energy of the droplets increased significantly. Under the condition of 6.9 MPa-30 min, the mass loss of a few composites was less than that of pure PU; under the condition of 8.3 MPa-30 min, the mass loss of most composites was less than that of pure PU; under the condition of 10.3 MPa-30 min, the mass loss of all composites was less than pure PU. The composites exhibited better droplet erosion resistance under higher impact energy. Under the condition of 10.3 MPa-30 min, the erosion craters of the composite 100PPI 0.8/PU were small and shallow, a small piece of resin was peeled off from the surface, and the metal arris were damaged slightly. The erosion craters of the 50PPI composite were large and deep, the resin phase was peeled off from the metal skeleton, and the metal arris had a small amount of plastic deformation and fracture. The erosion craters of the 25PPI composite were very deep with large pieces of resin peeling off from the metal arris, but the metal arris were damaged slightly. In general, the metal arris damage of all composites was relatively small, and resin peeling from the metal arris was the main source of damage for all composites. The erosion craters of pure PU were larger and deeper than that of all the composites. When the droplets impacted, pure PU cracked under the action of water hammer pressure and stress wave. The crack widened and deepened under the action of lateral jet and hydraulic penetration. As impact energy of the droplets increased, the composites' resistance to high-speed droplet erosion was significantly better than pure PU. The Ni foam metal skeleton could block the impact of droplets, played a good protective role for the resin under the metal arris, which showed the shadow protection effect. The droplets of the forward and lateral jets rebounded when hitting the metal arris, and the rebounded droplets blocked the droplets that arrive later, which showed the carpet protective effect. The smaller the pore size of the Ni foam, the better the erosion resistance of the composite. The metal skeleton in the composite had strong resistance to the effects of water hammer pressure, stress wave, lateral jet and hydraulic penetration, and had shadow protection and carpet protection effects on the resin phase, while the resin phase can provide support effects on Ni foam absorbing the impact energy of droplets. The synergistic effect of the two phases improved the droplet erosion resistance of the composite. The composite 100PPI 0.8/PU exhibited the best droplet erosion resistance due to its dense metal skeleton. Application of Ni foam with small pore size and small volume density was beneficial to droplet erosion resistance of the Ni foam/PU co-continuous composites.
-
Keywords:
- droplet erosion /
- co-continuous composite /
- PIV /
- polyurethane /
- nickel foam
-
液滴冲蚀是指大量的高速液滴反复撞击固体表面,对材料造成的损伤,它是一种特殊的冲蚀形式[1]. 在火电站燃气轮机的压缩机叶片上,核电站蒸汽管道中的弯管、阀门上,和雨中高速运动的飞机、导弹上,液滴冲蚀现象十分常见[2-4]. 液滴冲蚀能对材料造成极大的损伤,降低服役零部件的使用寿命,带来极大的安全隐患. 由于涉及许多参数,液滴冲蚀的机理十分复杂,常见的参数包括:冲击速度、攻角、液滴粒径尺寸、液滴密度、撞击频率、液膜形成厚度和靶材料的机械性能等. 表1中总结了过去对液滴冲蚀起始速度的一些研究,因为试验方法、材料和液滴直径等试验条件不同,研究结果高度分散[5]. 材料的硬度、延展性、断裂韧性和疲劳极限高,其抗液滴冲蚀性能往往比较好[6-7]. 其中,高硬度通过延缓液滴冲蚀中发生的材料表面变形,可发挥比其他性质更重要的作用. 而延展性使材料能够适应局部的应力集中,在液滴冲蚀中也发挥着重要的作用[8]. 尽管已经有了一些相关研究,但是到目前为止,还不能通过定义、量化1个绝对的参数来评价材料的抗液滴冲蚀性能[9].
Researcher Test method Initial speed of erosion/(m/s) (Material) Droplet diameter/μm Thiruvengadam et al. (1970) Rotating disc 52 (Al 1100-0);
104 (Ni B-160);
120 (SUS 316);
120 (Ti 6Al4V)Not tested Shinogaya et al. (1987) Nozzle jet 100 (Pure iron);
80 (Pure Al)150~250 (Laser method) Tsuruta et al. (2006) Rotating disc 70 (SUS304) 4 000 (Direct observation) Oka et al. (2007) Nozzle jet 45 (Al 5083) 150 (Intrusion method) Hattori-Takinami (2010) Nozzle jet 80 (S15C);
90 (STPA24);
120 (SUS304)Not tested Hama et al. (2011) Nozzle jet 95 (A1050) 50 (Shadow method) 聚氨酯弹性体是一种高分子材料,它具备良好的弹性变形能力、阻尼减振性能和抗腐蚀性能. 液滴冲蚀发生时,聚氨酯能通过发生弹性变形,很好地吸收和转移能量. 在喷砂、空蚀试验中,改性聚氨酯和含聚氨酯成分的复合材料,均表现出了良好的抗冲蚀性能[10-14],但聚氨酯弹性体强度低,明显制约了其应用[15-16]. 作者采用真空灌注工艺,在聚氨酯里加入泡沫镍金属骨架,实现了聚氨酯的三维增强. 泡沫镍有高的强度和抗腐蚀性能[17],泡沫镍/聚氨酯双连续复合材料实现了泡沫镍和聚氨酯空间上的各自三维连续、双网络互穿的结构,使得泡沫镍和聚氨酯的优势结合到了一起. 本文作者主要研究了泡沫镍的孔径、体密度等因素对双连续复合材料液滴冲蚀行为的影响.
1. 试验部分
1.1 材料制备
采用真空灌注的方法制备了一系列泡沫镍/聚氨酯双连续复合材料,具体细节在先前的工作中已经报道[18]. 不同的双连续复合材料以其泡沫镍规格和聚氨酯命名. 例如,双连续复合材料50 PPI 0.5/PU,50 PPI(每英寸长度上泡孔的数目)表示泡沫镍的孔径大小,0.5是泡沫镍的体密度大小(单位g/cm3),PU是聚氨酯的英文名称缩写. 制备的泡沫镍/聚氨酯双连续复合材料填充完全,鲜有气孔,金属相和树脂相形成了独特的互穿网络结构.
1.2 高速液滴试验
参照ASTM标准G73-98,购置并改造了高速液滴冲蚀装置,其工作原理如图1所示. 柱塞泵将水输入管路,通过调节分流阀,喷嘴处获得不同流速的液流. 柱塞泵通有循环冷却水,使得整个试验装置维持在室温. 图2(a)是喷嘴和样品台照片,图2(b)是雾化喷嘴三维立体仰视图. 喷嘴出口为椭圆,长轴1.4 mm,短轴0.9 mm. 液流从喷嘴射出时,受两道平行壁面约束,呈现扇形散射,扇形散射的液滴会完全覆盖样品表面.
喷嘴正对试验样品中心位置,距离为10 cm. 圆片状样品直径为20 mm,厚10 mm,试验前每个样品用1 000#砂纸打磨. 选择不同流速和不同时间,对样品进行液滴冲蚀试验. 试验前后每个样品均用蒸馏水超声清洗干净,在80 ℃真空环境下烘干至恒重,用精确度为0.1 mg的分析天平称重,得到质量损失. 每个试验重复3次. 用日本基恩士公司的VR-3200轮廓仪和美国FEI公司的Inspect F50扫描电子显微镜(SEM)观察液滴冲蚀试验后的样品形貌.
1.3 液滴速度与粒径的测量
使用PIV(粒子图像测量技术)系统测量液滴的速度和粒径. PIV系统主要由激光发生器、照相机(美国TSI公司630090相机、日本尼康公司AF 60 mm/2.8D镜头)、同步控制器和计算机等构成,如图3(a)所示. 激光发生器会发射两束细长、竖直的激光,打向喷嘴下方的液滴. 同步控制器使照相机抓拍成像,得到两张照片. 已知两束激光的时间间隔(自行设置,一般为几个微秒),比较两张照片上粒子的整体移动距离,通过软件Insight 4G便可以计算出液滴的运动速度.
通过PIV系统的图像处理软件对液滴粒径进行测量. 图3(b)是6.9 MPa下的喷雾照片. 照片上具有一定亮度、一定大小的区域会被软件识别为1个粒子,参数自行设置. 本试验中,亮度值大于50、直径在3~32个像素范围的区域被认为是1个粒子. 软件Insight 4G采用一定的算法,得到粒径分布.
2. 结果与讨论
2.1 液滴的速度与粒径
图4给出了管路中水在不同压力下喷射出的液滴速度分布图. 喷嘴在上方,喷射方向是向下的,每张图的中间就是喷嘴下方10 cm的位置(即液滴撞击样品表面的位置). 可以看到,6.9 MPa压力下,液滴速度在70 m/s左右;8.3 MPa压力下,液滴速度在90 m/s左右;10.3 MPa压力下,液滴速度在115 m/s左右. 同时,通过收集一定时间内喷嘴喷出的水量,计算出了流量. 6.9 MPa压力下,流量为5.870 L/min;8.3 MPa压力下,流量为6.264 L/min;10.3 MPa压力下,流量为6.814 L/min. 以上数据表明:当管路压力变大时,液滴速度和流量都变大;液滴速度大体上与管路压力成正比,流量与管路压力的立方根成正比.
图5给出了不同管路压力下的液滴粒径分布图,每张图的纵坐标是粒子数,横坐标是粒子直径. 对图5数据进行统计处理,得到表2所列结果. 从表2可以看到,管路压力越大,大液滴(>500 μm)占总液滴数的百分比越高. 也就是随着压力的增加,液滴尺寸有增大的趋势,但不是很显著. Heymann等[19]研究表明,总水量相同时,大液滴比小液滴更容易引起冲蚀破坏.
表 2 不同管路压力下的液滴粒径分布表Table 2. Droplet size distribution under different line pressuresDifferent line pressure Average droplet diameter/μm Small droplets(≤500 μm) percentage Large droplets(>500 μm) percentage 6.9 MPa 480 81.4% 18.6% 8.3 MPa 512 77.1% 22.9% 10.3 MPa 543 69.2% 30.8% 综上,当管路压力越大时,流量越大,液滴速度越大,大液滴占总液滴数的百分比越高. 当管路压力增大时,不仅液滴的速度增加,液滴的尺寸有所增加,而且单位时间内液滴的总数量增加,作用频率也增加. 因此,随着管路压力的增大,液滴的冲击能量明显增强.
2.2 材料冲蚀损伤行为
从图6可以看出,在6.9 MPa-30 min条件下,少数复合材料的质量损失少于纯聚氨酯;在8.3 MPa-30 min条件下,多数复合材料的质量损失小于纯聚氨酯;在10.3 MPa-30 min条件下,所有复合材料的质量损失均小于纯聚氨酯. 可见,随着冲击能量的增加,复合材料表现出更好的抗液滴冲蚀性能.
在冲击能量较低(6.9 MPa-30 min)的条件下,当液滴撞击聚氨酯表面时,由于纯聚氨酯波阻抗小,对应力波的传递能力强,其通过发生弹性变形,将表面受到的冲击能量传递出去,减少材料发生损伤,体现出较好的抗液滴冲蚀性能;当液滴撞击复合材料表面时,树脂相因为受到金属骨架的约束,弹性变形能力比纯聚氨酯差,复合材料不能通过发生弹性变形,将表面受到的冲击能量传递出去,因此复合材料通过两相界面脱粘、树脂相和金属相的断裂等方式吸收冲击能量,损伤量有所增加. 聚氨酯种类繁多,使用的这种聚氨酯弹性体,塑性变形能力很小[18]. 当遭遇液滴低速撞击时,聚氨酯发生弹性变形,不出现损伤. 当遭遇液滴高速撞击时,聚氨酯几乎没有塑性变形,直接产生裂纹,发生脆性剥落.
从图6还可以看出,体密度相近,孔径越小,复合材料的质量损失越小;孔径相同时,体密度越大,复合材料的质量损失越小. 复合材料100 PPI 0.8/PU在3个条件下均优于其他的复合材料和纯聚氨酯,抗液滴冲蚀性能最好.
图7是10.3 MPa下进行30 min的液滴冲蚀试验后的样品表面形貌. 可以看到,复合材料100 PPI 0.8/PU的冲蚀坑小而浅,有小块树脂从表面剥离,金属棱损伤少. 50 PPI复合材料的冲蚀坑较大且深,有树脂相从金属网格中剥离,金属棱发生了少量的塑性变形和断裂. 25 PPI复合材料的冲蚀坑非常深,有大块树脂从金属网格中剥落,但金属棱损伤较少. 总的来说,所有复合材料的金属棱损伤均比较小,树脂从金属网格中剥落是所有复合材料损伤的主要来源. 纯聚氨酯的冲蚀坑比所有复合材料的冲蚀坑都更大更深.
2.3 材料损伤机制
2.3.1 聚氨酯的损伤
为了深入理解高速液滴冲蚀的损伤模式,研究中提出了水锤压力、应力波、侧向射流和水力渗透等作用机制[19–23]. 水锤压力是指高速液滴与固体靶材表面碰撞产生的高压[21],它可导致表面裂纹萌生. 液滴反复的撞击会产生应力波,许多的应力波会在固体靶材中传播. 应力波遇到两相界面会发生反射和折射,反射的应力波相遇会在固体靶材中产生应力集中,萌生裂纹[21-22]. 液滴撞击时会引起局部冲击波,并在液滴表面发生反射,随后出现侧向射流,其最大速度比液滴的撞击速度快约10倍[24]. 在裂纹已经存在的情况下,侧向射流和水力渗透作用在裂纹扩展和材料去除方面起主要作用[21].
液滴冲蚀初始阶段,纯聚氨酯在水锤压力和应力波的作用下产生裂纹. 裂纹在侧向射流和水力渗透作用下变宽变深,如图8所示. 纯聚氨酯的表面裂纹在应力波和水力渗透作用的驱动下,能够一直向材料内部扩展,如图9所示. 当液滴冲蚀剧烈时,材料内部的多条裂纹汇聚,导致大块的材料去除,冲蚀坑合并,如图7(g)所示.
2.3.2 复合材料的损伤
在高速液滴的反复撞击下,复合材料受到水锤压力和应力波作用,表面的树脂出现裂纹,金属棱发生塑性变形和断裂. 侧向射流作用使裂纹的宽度增加,裂纹的水平扩展使裂纹变成了冲蚀坑. 由于水力渗透作用,冲蚀坑底部的裂纹向材料内部扩展,裂纹汇聚使得冲蚀坑变深,如图10所示.
双连续复合材料中的增强相通过“阴影保护效应”和“地毯保护效应”来保护基体相,从而提高材料的抗冲蚀性能[25-27]. 泡沫镍是类似正十二面体结构[28],每条金属棱都是中空三棱柱结构. 泡沫镍/聚氨酯双连续复合材料可以看成由许多规则的十二面体单元组成,泡沫镍为增强相,树脂相为基体相. 泡沫镍金属骨架能够遮挡液滴的撞击,对金属棱下方的树脂起到很好的保护作用,体现了阴影保护效应. 正冲和侧向射流的液滴,打到金属棱后会发生反弹,反弹的液滴会遮挡之后到达的液滴,体现了地毯保护效应. 图11是复合材料液滴冲蚀损伤机制的二维示意图. 孔径越小,则金属骨架越密集,对侧向射流和水力渗透作用的阻力越强;金属棱越厚,阴影保护效应和地毯保护效应就越强.
由前文可知,大多数液滴的直径在250 μm以上,即液滴粒径大于100 PPI泡沫镍的孔径. 因此,100 PPI泡沫镍金属骨架能极大地阻碍液滴冲蚀,使侧向射流和水力渗透作用无法深入复合材料的内部,极大地减少了冲蚀损伤. 因为液滴冲蚀对金属棱的损伤小,所以复合材料100 PPI 0.8/PU密集的金属骨架,一直存在于复合材料表面,阻挡着液滴冲蚀的四种作用,减缓了树脂的进一步剥落. 金属棱通过阴影保护效应减少了树脂的剥落,而树脂通过支撑效应帮助金属棱吸收液滴撞击的动能,缓冲液滴的撞击. 复合材料100 PPI 0.8/PU表面的金属棱分布密集,液滴撞击金属棱后反弹的几率大,形成的地毯保护效应强. 综上原因,复合材料在100 PPI 0.8/PU在6.9 MPa-30 min、8.3 MPa-30 min和10.3 MPa-30 min条件下质量损失均少于其他的复合材料. 因此,采用小孔径,不需要很厚的金属棱,就能使复合材料获得好的抗液滴冲蚀性能.
3. 结论
a. 采用PIV系统,测量了液滴冲蚀试验时液滴的速度和直径. 当管路压力增大时,不仅液滴速度增大,粒径略有增加,而且液滴数量增多,作用频率更大.
b. 纯聚氨酯在高速液滴冲击下,表面形成裂纹,裂纹在横向和纵向不断扩展,造成材料大量剥落. 随着液滴冲击能量增加,复合材料抗高速液滴冲蚀性能明显优于纯聚氨酯,泡沫镍的孔径越小、体密度越大,复合材料的抗冲蚀性能越好.
c. 复合材料中的金属骨架对水锤压力、应力波、侧向射流和水力渗透四种作用有着很强的阻力,对树脂相有阴影保护和地毯保护效应;而树脂相能提供支撑效应,吸收液滴撞击的动能. 二者协同作用提高了复合材料的抗液滴冲蚀性能.
d. 复合材料100 PPI 0.8/PU由于具有密集的金属骨架,表现出了最优的抗液滴冲蚀性能. 这表明采用小孔径和小体密度的泡沫镍,能使复合材料获得好的抗液滴冲蚀性能.
-
Researcher Test method Initial speed of erosion/(m/s) (Material) Droplet diameter/μm Thiruvengadam et al. (1970) Rotating disc 52 (Al 1100-0);
104 (Ni B-160);
120 (SUS 316);
120 (Ti 6Al4V)Not tested Shinogaya et al. (1987) Nozzle jet 100 (Pure iron);
80 (Pure Al)150~250 (Laser method) Tsuruta et al. (2006) Rotating disc 70 (SUS304) 4 000 (Direct observation) Oka et al. (2007) Nozzle jet 45 (Al 5083) 150 (Intrusion method) Hattori-Takinami (2010) Nozzle jet 80 (S15C);
90 (STPA24);
120 (SUS304)Not tested Hama et al. (2011) Nozzle jet 95 (A1050) 50 (Shadow method) 表 2 不同管路压力下的液滴粒径分布表
Table 2 Droplet size distribution under different line pressures
Different line pressure Average droplet diameter/μm Small droplets(≤500 μm) percentage Large droplets(>500 μm) percentage 6.9 MPa 480 81.4% 18.6% 8.3 MPa 512 77.1% 22.9% 10.3 MPa 543 69.2% 30.8% -
[1] Budinski K G, Budinski M K. Engineering materials-properties and selection[M]. New York: Prentice Hall Press, 2010
[2] Zhang Zheyuan, Zhang Di, Xie Yonghui. Experimental study on water droplet erosion resistance of coatings (Ni60 and WC-17Co) sprayed by APS and HVOF[J]. Wear, 2019, 432-433: 202950. doi: 10.1016/j.wear.2019.202950
[3] Venturini P, Andreoli M, Borello D, et al. Modeling of water droplets erosion on a subsonic compressor cascade[J]. Flow, Turbulence and Combustion, 2019, 103(4): 1109–1125. doi: 10.1007/s10494-019-00086-0
[4] Di Juan, Wang Shunsen, Yan Xiaojiang, et al. Experimental research on water droplet erosion resistance characteristics of turbine blade substrate and strengthened layers materials[J]. Materials, 2020, 13(19): 4286. doi: 10.3390/ma13194286
[5] Fujisawa N, Komatsu M, Yamagata T. Experimental study on erosion initiation via liquid droplet impingement on smooth and rough walls[J]. Wear, 2020, 452-453: 203316. doi: 10.1016/j.wear.2020.203316
[6] Heyman F J. Liquid impingement erosion[J]. Wear, 1992, 18: 221–232.
[7] Springer G S. Liquid droplet erosion[M]. New York: John Wiley & Sons Press, 1976
[8] Mann B S, Arya V. HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades[J]. Wear, 2003, 254(7-8): 652–667. doi: 10.1016/S0043-1648(03)00253-9
[9] ASTM G73-10, Standard test method for liquid impingement erosion using rotating apparatus[S]. ASTM International, West Consho hocken, 2010
[10] 栾道成, 丁武成, 李茂华. 聚氨酯-Si3N4陶瓷复合材料浆体冲蚀磨损性能研究[J]. 摩擦学学报, 2004, 24(3): 268–271 doi: 10.16078/j.tribology.2004.03.017 Luan Daocheng, Ding Wucheng, Li Maohua. Erosion-wear resistance of polyurethane-Si3N4 composite[J]. Tribology, 2004, 24(3): 268–271 doi: 10.16078/j.tribology.2004.03.017
[11] 钟萍, 彭恩高, 李健, 等. 聚氨酯(脲)涂层冲蚀磨损性能研究[J]. 摩擦学学报, 2007, 27(5): 447–450 doi: 10.3321/j.issn:1004-0595.2007.05.010 Zhong Ping, Peng Engao, Li Jian, et al. Study of erosion behavior of polyurethane-urea coating[J]. Tribology, 2007, 27(5): 447–450 doi: 10.3321/j.issn:1004-0595.2007.05.010
[12] Dong Mengyao, Wang Chuan, Liu Hu, et al. Enhanced solid particle erosion properties of thermoplastic polyurethane-carbon nanotube nanocomposites[J]. Macromolecular Materials and Engineering, 2019, 304(5): 1900010. doi: 10.1002/mame.201900010
[13] Qiao Xingnian, Chen Rongrong, Zhang Hongsen, et al. Outstanding cavitation erosion resistance of hydrophobic polydimethylsiloxane-based polyurethane coatings[J]. Journal of Applied Polymer Science, 2019, 136(25): 47668. doi: 10.1002/app.47668
[14] Bahramnia H, Mohammadian Semnani H, Habibolahzadeh A, et al. Epoxy/polyurethane nanocomposite coatings for anti-erosion/wear applications: a review[J]. Journal of Composite Materials, 2020, 54(22): 3189–3203. doi: 10.1177/0021998320908299
[15] Avar G, Meier-Westhues U, Casselmann H, et al. 10.24-Polyurethanes[M]. Polymer Science: A Comprehensive Reference. Amsterdam: Elsevier, 2012, 10: 411-441. doi: 10.1016/b978-0-444-53349-4.00275-2
[16] Jiang Shuai, Li Qifeng, Zhao Yuhua, et al. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites[J]. Composites Science and Technology, 2015, 110: 87–94. doi: 10.1016/j.compscitech.2015.01.022
[17] Hatamie A, Rezvani E, Rasouli A S, et al. Electrocatalytic oxidation of ethanol on flexible three-dimensional interconnected nickel/gold composite foams in alkaline media[J]. Electroanalysis, 2019, 31(3): 504–511. doi: 10.1002/elan.201800490
[18] Wang J X, Duan D L, Yang X G, et al. Tensile behavior of nickel foam/polyurethane co-continuous composites[J]. Materials Research Express, 2019, 6(9): 095103. doi: 10.1088/2053-1591/ab2f9d
[19] Heymann, F. Liquid Impingement Erosion[J]. ASM International:Materials Park, 1992, 18: 221–232.
[20] Unified empirical relations for cavitation and liquid impingement erosion processes[J]. Wear, 1984, 120(3): 253-288
[21] Kong M C, Axinte D, Voice W. Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide[J]. Journal of Materials Processing Technology, 2010, 210(3): 573–584. doi: 10.1016/j.jmatprotec.2009.11.009
[22] Hammitt F G, Heymann F J. Liquid-erosion failures, failure analysis and prevention[J]. ASM International:Materials Park, 1986, 11: 163–171.
[23] Adler W F. The Mechanics of Liquid Impact[M]. London: Academic Press, 1979
[24] Field J E, Lesser M B, Dear J P. Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1985, 401(1821): 225–249. doi: 10.1098/rspa.1985.0096
[25] Ren Z H, Zheng Y G, Jiang C H, et al. Erosive behaviors of SiC foam/epoxy co-continuous phase composites[J]. Wear, 2015, 336-337: 21–28. doi: 10.1016/j.wear.2015.04.019
[26] Ren Z H, Jin P, Cao X M, et al. Mechanical properties and slurry erosion resistance of SiC ceramic foam/epoxy co-continuous phase composite[J]. Composites Science and Technology, 2015, 107: 129–136. doi: 10.1016/j.compscitech.2014.12.012
[27] 万伟, 曹小明, 张劲松. SiC泡沫陶瓷/球墨铸铁双连续相复合材料的气固两相流冲蚀性能[J]. 材料研究学报, 2020, 34(5): 361–367 doi: 10.11901/1005.3093.2019.167 Wan Wei, Cao Xiaoming, Zhang Jinsong. Erosion performance for Co-continuous phase composite of SiC foam ceramic/ductile iron[J]. Chinese Journal of Materials Research, 2020, 34(5): 361–367 doi: 10.11901/1005.3093.2019.167
[28] D. L. Duan, R. L. Zhang, X. J. Ding, S. Li. Calculation of specific surface area of foam metals using a dodecahedron model[J]. Material Science and Technology, 2006, 22(11): 1364–1367. doi: 10.1179/174328406X111138
-
期刊类型引用(0)
其他类型引用(1)