Influence of Atomic Oxygen on the Vacuum Tribological Performance of MoS2-Ti Composite Films Deposited by Unbalanced Magnetron Sputtering
-
摘要: 对采用非平衡磁控溅射方法制备的柱状晶MoS2-Ti复合薄膜开展了原子氧(AO)辐照试验. 原子氧的平均动能是5 eV,累计辐照通量6.0×1022 atoms/cm2. 原子氧造成薄膜表面出现“绒毯”状形貌,表层的MoS2和内部的低价钛氧化物分别被氧化成硬质的MoO3和TiO2,但原子氧对距表层30 nm以下Mo的化学态没有影响. 薄膜的初始真空摩擦系数和磨损率分别由辐照前的大约0.018和4.49 × 10−17 m3/(N·m)升高至0.03 和5.5×10−17 m3/(N·m),磨损机制也发生了由黏着磨损向磨粒磨损的转变.Abstract: MoS2-Ti composite film with columnar microstructure was fabricated by unbalanced magnetron sputtering, and was irradiated by an atomic oxygen (AO) beam with 5eV kinetic energy and total fluence of 6.0×1022 atoms/cm2. The MoS2-Ti composite film exhibited a “blanket-like” surface morphology after AO irradiation. The MoS2 phase on the film surface (within the depth of ~30 nm) and titanium suboxides (e.g. TiO2-x, where 0<x<2) inside the film were oxidized by AO into MoO3 and TiO2, respectively, leaving the MoS2 beneath the top 30 nm oxidation layer uninfluenced were oxidized to MoO3 and TiO2, leaving unchanged chemical state of element Mo in the film. After AO irradiation, initial friction coefficient and wear rate increased from 0.018 to 0.03 and 4.49 × 10−17 m3/(N·m) to 5.5 × 10−17 m3/(N·m), respectively, and its friction mechanism was transformed from adhesion to abrasion.
-
Keywords:
- MoS2-Ti film /
- AO irradiation /
- vacuum /
- chemical components /
- tribological mechanism
-
表 1 摩擦测试参数
Table 1 Friction testing parameters
Testing machine Friction couples Testing conditions Ball on disk in vacuum, made by CSM in Swiss Ball: Φ 8 mm stainless steel ball, Ra: 0.02.
Set1: MoS2-Ti film before AO irradiation;
Set2: MoS2-Ti film after AO irradiationVacuum: < 5×10−3 Pa,room temperature;
Sliding speed: 0.73 m/s of uni-direction;
Normal load and track radius: 5 N and 7 mm;
Revolving speed: 1 000 r/min;
Stopping criterion: terminated once reaching a total revolutions of 4.5 × 105 r (r represents revolution)表 2 原子氧辐照前和辐照后的薄膜表面粗糙度
Table 2 Surface roughness of the samples before and after AO irradiation
Specimen Ra/nm Rq/nm △q/(°) Before AO irradiation 51.4 68.6 2.95 After AO irradiation 50.2 64.3 2.58 表 3 原子氧辐照前和辐照后表面的化学组成
Table 3 Chemical compositions on the surface before and after AO irradiation
Compositions Atoms fraction/% Before AO irradiation After AO irradiation Mo4+ as in MoS2 5.33 1.32 Mo6+ as in MoO3 2.66 2.85 Mo4+ as in MoO2 3.14 0.00 S2− as in MoS2 11.38 2.61 S6+ as in SO42− 0.43 3.23 Ti4+ as in TiO2 2.26 1.56 Ti3+ as in Ti2O3 0.33 0.00 O2- as in TiO2, Ti2O3, SO42−,
MoO3, MoO222.14 28.16 O2− as in −C−O, H2O 52.34 60.26 -
[1] Emyr. W. Roberts. Space Tribology Handbook[M]. ESR Technology Ltd Press, 2007.
[2] E M Silverman. Materials Exposure and Degradation Experiment[R]. NASA Contractor Report 4661-Part 1, 1995.
[3] Packirisamy S, Schwam D, Litt M H. Atomic oxygen resistant coatings for low earth orbit space structures[J]. Journal of Materials Science, 1995, 30(2): 308–320. doi: 10.1007/BF00354390
[4] Hilton M R, Fleischauer P D. Applications of solid lubricant films in spacecraft[J]. Surface and Coatings Technology, 1992, 54-55: 435–441. doi: 10.1016/S0257-8972(07)80062-4
[5] 姜海富, 张汉宇, 姜利祥, 等. 石墨烯薄膜原子氧剥蚀行为及电阻特性[J]. 装备环境工程, 2020, 17(3): 39–44 Jiang Haifu, Zhang Hanyu, Jiang Lixiang, et al. Atomic oxygen erosion behavior and resistance characteristic of graphene film[J]. Equipment Environmental Engineering, 2020, 17(3): 39–44
[6] 李昊耕, 谷红宇, 章俞之, 等. 聚合物材料表面原子氧防护技术的研究进展[J]. 无机材料学报, 2019, 34(7): 685–693 doi: 10.15541/jim20180515 Li Haogeng, Gu Hongyu, Zhang Yuzhi, et al. Surface protection of polymer materials from atomic oxygen: a review[J]. Journal of Inorganic Materials, 2019, 34(7): 685–693 doi: 10.15541/jim20180515
[7] 王丹, 高志敏, 李中华, 等. 环境因素对聚酰亚胺薄膜及涂层侵蚀效应分析[J]. 表面技术, 2018, 47(1): 123–128 doi: 10.16490/j.cnki.issn.1001-3660.2018.01.019 Wang Dan, Gao Zhimin, Li Zhonghua, et al. Analysis of erosion effect of environmental factors on polyimide films and coatings[J]. Surface Technology, 2018, 47(1): 123–128 doi: 10.16490/j.cnki.issn.1001-3660.2018.01.019
[8] Gao Xiaoming, Hu Ming, Fu Yanlong, et al. MoS2-Sb2O3 film exhibiting better oxidation-resistance in atomic oxygen environment[J]. Materials Letters, 2018, 219: 212–215. doi: 10.1016/j.matlet.2018.02.093
[9] Gao Xiaoming, Fu Yanlong, Jiang Dong, et al. Constructing WS2/MoS2 nano-scale multilayer film and understanding its positive response to space environment[J]. Surface and Coatings Technology, 2018, 353: 8–17. doi: 10.1016/j.surfcoat.2018.08.072
[10] Cross J B, Martin J A, Pope L E, et al. Atomic oxygen-MoS2 chemical interactions[J]. Surface and Coatings Technology, 1990, 42(1): 41–48. doi: 10.1016/0257-8972(90)90113-Q
[11] Gao Xiaoming, Hu Ming, Sun Jiayi, et al. Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure[J]. Applied Surface Science, 2015, 330: 30–38. doi: 10.1016/j.apsusc.2014.12.175
[12] Xu Shusheng, Hu Ming, Sun Jiayi, et al. A simple strategy to tailor the microstructure and wear-resistance of sputtered WS2 films[J]. Materials Letters, 2018, 216: 179–181. doi: 10.1016/j.matlet.2018.01.027
[13] Xu Shusheng, Sun Jiayi, Weng Lijun, et al. In-situ friction and wear responses of WS2 films to space environment: Vacuum and atomic oxygen[J]. Applied Surface Science, 2018, 447: 368–373. doi: 10.1016/j.apsusc.2018.04.012
[14] Wang D Y, Chang C L, Chen Z Y, et al. Microstructural and tribological characterization of MoS2-Ti composite solid lubricating films[J]. Surface and Coatings Technology, 1999, 120-121: 629–635. doi: 10.1016/S0257-8972(99)00431-4
[15] Singh H, Mutyala K C, Mohseni H, et al. Tribological performance and coating characteristics of sputter-deposited Ti-doped MoS2 in rolling and sliding contact[J]. Tribology Transactions, 2015, 58(5): 767–777. doi: 10.1080/10402004.2015.1015758
[16] 鞠鹏飞, 王海新, 蒲吉斌, 等. 空间部件表面Ti/MoS2润滑涂层性能研究[J]. 真空科学与技术学报, 2018, 38(10): 901–905 doi: 10.13922/j.cnki.cjovst.2018.10.13 Ju Pengfei, Wang Haixin, Pu Jibin, et al. Impact of Ti-doping on tribological properties of MoS2 coatings on spacecraft component[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(10): 901–905 doi: 10.13922/j.cnki.cjovst.2018.10.13
-
期刊类型引用(4)
1. 王虎,何延春,李中华,周超,李坤,李学磊,左华平,王晓毅,王兰喜,杨淼,李毅,周晖,张斌. 空间原子氧防护涂层技术研究现状及挑战. 中国表面工程. 2025(01): 40-56 . 百度学术
2. 张瑞,张弘,柴利强,王鹏. 磁约束聚变堆中的润滑研究. 摩擦学学报(中英文). 2024(03): 421-436 . 百度学术
3. 王伟奇,陈欣仪,赵旋,林鑫,田广科,郭月霞,王锐东,令晓明. 闭合场-磁控溅射制备Ti掺杂MoS_2复合薄膜及其摩擦学性能研究. 润滑与密封. 2024(08): 28-35 . 百度学术
4. 李煊禹,吉利,刘晓红,孙初锋,李红轩. MoS_2-C异质复合薄膜的真空超滑行为及其机制研究. 摩擦学学报. 2023(10): 1140-1150 . 本站查看
其他类型引用(2)