Role of Penniform Carbon Nitride Aqueous Lubricants on the Tribological Properties of Epoxy Resin-Stainless Steel
-
摘要: 随着人们环保意识的逐渐增强,对可能存在污染或破坏环境且造成资源浪费的生产活动以及设备的更新升级提出了新的更高的要求. 对于介质润滑领域,尤其是应用广泛且节能环保的水润滑领域,相比传统的润滑油,水作为润滑剂除了安全性高和具有冷却作用外,最大特点就是绿色环保、节约资源且成本低廉. 但是,纯水本身具有一些不足之处,比如黏度低、耐极压能力差、承载和润滑性能差等,导致纯水不适合直接作为润滑剂,这在很大程度上限制了涉及水润滑相关产业的发展. 基于此,在本文中以柠檬酸和尿素为原料,采用一步水热法合成了羽状氮化碳材料. 此方法的特点在于可将氮化碳原位分散于水中,制成水基润滑剂,既实现了溶质的均匀分散和有效抑制团聚,同时可以制备微米级分布的水溶性氮化碳材料. 将其作为水润滑剂,利用环-块摩擦磨损试验机,以逐滴滴加的方式考察了不同质量分数羽状氮化碳对环氧树脂-不锈钢配副在苛刻边界润滑条件下的摩擦学性能. 材料的微观形貌表征结果表明:体相氮化碳在水热条件下直接发生了层间剥离,生成了层间结构蓬松的羽状结构材料. 由于水热条件下的高温和高压环境,导致其层间结合强度显著降低. 同时,蓬松的层间结构有利于氮化碳材料在摩擦过程中向界面转移,在界面形成薄而连续的转移膜. 界面转移物质的拉曼分析结果表明:相较于单纯去离子水,以羽状氮化碳为水润滑剂时,金属对偶表面转移的含碳物质的有序化程度显著提高,而且有序化程度随着水润滑剂中氮化碳含量的增加而逐步提高,间接表明氮化碳材料在界面形成了结构有序的转移膜. 而且氮化碳基转移膜的承载能力和润滑性能俱佳,它可有效保护环氧树脂(EP)-不锈钢配副,避免单纯去离子水润滑时因其承载和润滑性能差导致EP严重磨损的发生. 纯去离子水作为润滑剂时,配副的摩擦系数和EP磨损量分别为0.56和2.92×10−4 mm3/(N·m). 而逐滴添加质量分数20%的羽状氮化碳水润滑剂,上述配副的摩擦系数和EP磨损量分别下降了71.4%和78.1%. 原位水基羽状氮化碳作为一种新型绿色环保水润滑剂,在聚合物-金属配副的润滑设计和使用寿命延长方面具有一定的研究价值和应用潜力.Abstract: With the increasing enhancement of people's awareness of environmental protection, new and high requirements have been posed to the upgrading and updating of production activities and equipment that may lead to environment pollution or destruction and resources waste. In the medium lubrication field, especially for water lubrication, it is used more widely, energy saving and environmental protection comparing with the traditional oil lubrication. While the most remarkable characteristic is green, eco-friendly and low cost for water lubrication, in addition to its high safety and well cooling effect. However, pure water has also some shortcomings, such as low viscosity, poor extreme pressure resistance, poor bearing capacity and poor lubrication performance, etc. This leads to pure water not suitable for direct use as a lubricant without modification, which to a large extent restricts the development of industries related to water lubrication. Based on this, we synthesized the penniform carbon nitride (PFCN) material by a one-step hydrothermal method adopting citric acid and urea as the raw materials. The characteristic of hydrothermal method is that carbon nitride can be dispersed in water in situ, gaining a water-based lubricant. Under this premise, it not only can realize the uniform dispersion of solute and effectively inhibit the agglomeration, but also can obtain the micron distribution of water-soluble carbon nitride materials. The tribological properties of PFCN with different mass fractions on epoxy resin (EP)-stainless steel tribopair under harsh boundary water lubrication conditions were investigated by using a block-on-ring friction and wear testing machine. The micro-structure characterization results of the PFCN material show that the bulk carbon nitride was directly exfoliated between layers under hydrothermal conditions and formed the materials with fluffy interlayer structures. Due to the high temperature and high pressure under hydrothermal conditions, the interlayer bonding strength decreased significantly. At the same time, the fluffy interlaminar structure is conducive to the transfer of the carbon nitride material onto the interface during the friction process, forming a thin and continuous transfer film on the steel counterface. And more importantly, Raman results of the transferred materials showed that ordering degrees of the carbon based materials formed on the counterface significantly increased when lubricated with PFCN as the water lubricant, comparing with deionized water, and furthermore the ordering degrees gradually increased with the content of carbon nitride in the water lubricant, indicating indirectly that the orderly transfer film was mainly composed of carbon nitride materials. In addition, the carbon nitride based transfer film possessed excellent bearing capacity and lubrication performance, which can effectively protect the EP-stainless steel tribopair and avoid the severe wear of EP specimens, comparing with the poor bearing capacity and lubrication performance of deionized water. When only deionized water was employed as the lubricant, friction coefficient of the tribopair and wear rate of the EP specimen were 0.56 and 2.92×10−4 mm3/(Nm), respectively. By contrast, the friction coefficient and wear rate were remarkably reduced by 71.4% and 78.1% respectively, with dropwise adding 20% PFCN as the water lubricant into the contact interface. As a new type of green water lubricant, in-situ water-based carbon nitride has certain research value and application potential in the lubrication design and service-life extension of polymer-metal pairs.
-
近年来,随着人们环保和节能意识的提高,对水润滑取代油润滑以及对水润滑剂的性能提出了越来越高的要求. 在摩擦学领域,水基润滑剂因其环境友好、节约能源、来源广泛以及成本低廉等优点[1-5],得到摩擦学者的广泛关注[6-8]. 然而,水的沸点和黏度低,润滑性能和承载能力较差[1,9-10],导致水润滑基本处于边界润滑状态,很难在摩擦界面构建高效的流体润滑膜[2,11],这在很大程度上制约了以水为润滑介质的相关运动机构(如柱塞水泵轴套、船舶尾轴承等)涉及的技术发展. 因此,设计制备减摩和耐磨性能优良且环境友好的水润滑剂对于推动水润滑技术的发展具有重要意义.
石墨相氮化碳 (g-C3N4) 是一种非金属聚合层状材料,主要由碳、氮和少量的氢元素组成[12],其空间结构如图1所示. 具有密度低、化学稳定性高、生物兼容性好和耐磨性强等特性[13],在光催化、生物成像、药物传递以及光电器件等领域[14-17]均有广泛应用. 近年来以增强填料的形式也逐渐被引入到摩擦学研究领域[18-22]. 对于水润滑体系而言,添加剂的分散性对其性能具有重要影响[2,23],原位分散可有效避免因添加剂团聚而引起的性能下降. 基于此,本文作者采用一步水热法原位合成了羽状氮化碳(PFCN)材料,将其作为水润滑剂,并以滴加的方式研究了不同质量分数PFCN对环氧树脂(EP)-不锈钢环(316L)配副在苛刻边界润滑条件下的摩擦学性能的影响. 通过表征配副表面磨损的微观形貌、钢环表面转移膜结构以及界面摩擦化学反应,对摩擦学机理进行了探讨. 以期通过本研究拓展水溶性氮化碳材料在水润滑领域的应用,并为新型环保水润滑剂的设计制备提供新思路.
1. 试验部分
1.1 材料制备
1.1.1 试验原料
一水合柠檬酸、尿素(分析纯,AR)及三乙烯四胺(TETA)固化剂均由国药集团化学试剂有限公司提供. 双酚A型环氧树脂(E51)购买于南通星辰合成材料有限公司.
1.1.2 环氧树脂材料的制备
按比例称取一定质量的 E51和 TETA,使用高速分散设备在40 ℃和真空条件下混合均匀. 转速为2 000 r/min,混合时间为20 min. 将混合均匀的物料倒入已涂脱模剂的橡胶模具(4 cm×6 cm×3 cm)中,在80 ℃烘箱中固化1 h后脱模,加工成尺寸为5 cm×1 cm×0.4 cm的长条,用于摩擦学性能测试.
1.1.3 PFCN原位水润滑剂的制备
根据文献[24]报道,按摩尔比1:4称取一定质量的一水合柠檬酸和尿素,在50 ℃下溶于适量去离子水中. 将混合液移至100 mL聚四氟乙烯内衬的水热釜中,在150 ℃下保温5 h后,自然冷却至室温,具体过程如图2所示. 其中,生成的体相g-C3N4进一步在水热条件下发生断键生成PFCN,具体过程可参照图3. 再以3 000 r/min的转速离心10 min后得到上清液,即为PFCN水润滑剂. 通过调控两种原料的比例,可以制备不同质量分数的PFCN水润滑剂. 具体含量通过差量法计算,即完全干燥一定质量原溶液的失重量. 在本研究中分别制备了4种PFCN润滑剂,质量分数分别为5%、10%、20%和30%. 采用场发射扫描电子显微镜(FE-SEM,Carl Zeiss,Germany)对干燥的5% PFCN材料进行微观形貌表征.
1.2 摩擦学性能测试
本研究中采用高速环-块摩擦磨损试验机(MRH-1A,济南益华)测试水润滑条件下EP-316L钢环配副的摩擦磨损性能,配副对摩示意图和照片如图4所示. 试验过程中,采用微量精密注射器将含有不同质量分数PFCN的润滑剂以2 mL/h的速率滴加至EP-316L钢环接触的楔入角位置. 试验载荷为100 N,钢环转动的线速度为0.1 m/s,测试时间为1 h. 试验前,钢环表面用石油醚超声清洗,再用砂纸打磨至表面粗糙度(Ra)为0.25 μm左右. 摩擦系数由测试设备实时记录. 每个样品至少测试3次,磨痕宽度取平均值. EP的磨损率根据公式(1)进行计算:
$$ {W_{\rm s}} = \frac{l}{{L \cdot N}}\left[ {{r^2} \cdot \arcsin \left( {\frac{W}{{2r}}} \right) - \frac{W}{4}\sqrt {4{r^2} - {W^2}} } \right] $$ (1) 式(1)中:Ws为EP试样的磨损率,单位mm3/(N·m);l为EP试样的磨损宽度,单位mm;W为EP试样的宽度,取值为10 mm;L为钢环滑动的总长度,单位m;N为施加载荷,单位N;r为钢环半径,单位m.
1.3 配副磨损表面和转移膜结构分析
采用光学显微镜(BX41,Olympus)和扫描电子显微镜(FE-SEM)表征EP试样和316L钢环磨损表面的微观形貌,借助拉曼光谱(Raman,LabRam HR800)分析钢环表面的转移物质.
2. 结果与讨论
2.1 PFCN的微观形貌
图5为一步水热法合成PFCN材料的SEM微观形貌,可以看出,PFCN显示蓬松的羽状结构,这是因为水热过程中反应釜内的高压水蒸汽削弱了生成的CN材料的层间结合强度,促使层状CN进一步剥层,形成蓬松结构. 而且相较于高温煅烧含氮前驱物制得的体相CN材料[19-20],具有更大的比表面积. PFCN材料的上述微观形貌和结构的变化都将引起其摩擦学性能的改变.
2.2 PFCN水润滑剂对EP摩擦磨损性能的影响
图6给出了以不同质量分数PFCN为水润滑剂,在苛刻的边界润滑条件下,纯EP与316L钢环相对摩擦后的平均摩擦系数和特征磨损率的柱状图. 由图6可见,相较于纯去离子水,PFCN作为水润滑剂可明显改善摩擦副的摩擦磨损性能,而且PFCN质量分数的变化对其摩擦学性能产生不同的影响. 对于摩擦系数,相比纯去离子水,质量分数5%的PFCN为水润滑剂可将配副的摩擦系数降低37.5%;而20%的PFCN水润滑剂可使其降低71.4%,并稳定在0.16左右. 对于特征磨损率,添加质量分数5%的PFCN水润滑剂可将EP的磨损率降低55.5%;而20%的PFCN水润滑剂可使EP的磨损率降低78.1%,达到6.4×10−5 mm3/(N∙m). 然而更高含量(质量分数30%)PFCN的水润滑剂不能进一步提高对EP-316L钢环配副的摩擦磨损性能. 因此,本研究中对配副摩擦学性能提高的PFCN水润滑剂的最优质量分数为20%.
2.3 磨损表面微观形貌及转移膜结构
为了进一步揭示PFCN水润滑剂相比纯去离子水对EP-316L钢环配副摩擦学性能影响的微观机制,采用扫描电镜对摩擦后EP表面的微观形貌进行了表征,结果如图7所示. 从图7(a)和(b)可以看出,以纯去离子水为润滑剂时,在EP表面形成清晰的划痕和排列紧密的犁沟,表明其遭受了严重磨损. 原因在于纯水的承载和润滑性能差[1-2,23],对摩擦副不能起到良好的支撑和润滑作用. 而采用PFCN为水润滑剂后,EP表面的磨损形貌发生了显著变化,磨损显著减轻[见图7(c~f)]. 而且随着PFCN含量的增加,如从5%提高到20%,对比图7(c~d)和图7(e~f),可见EP表面的磨损进一步减轻,由浅而窄的划痕转变为平整光滑的表面. 这说明PFCN的加入,一方面有利于提高润滑介质在界面的承载能力,避免配副直接接触和严重磨损;另一方面,水热后层间结构更加蓬松,结合强度进一步降低的PFCN更易发生转移,并在摩擦界面发挥润滑作用.
图 7 滴加不同质量分数PFCN水润滑剂时,纯EP试样磨损表面的光学显微镜(a,c,e)和电子显微镜(b,d,f)照片:(a,b)去离子水,(c,d)5% PFCN,(e,f) 20% PFCNFigure 7. Optical(a,c,e) and SEM micrographs(b,d,f) of worn surfaces of neat EP specimens after sliding with 316L steel rings dropwise lubricated with various PFCN lubricants:(a,b) DI water,(c,d) 5% PFCN,(e,f) 20% PFCN同时,对摩擦后钢环表面的微观形貌也进行了表征. 从图8(a)和(b)可以看出,由于介质的界面承载和润滑性较差,采用纯去离子水润滑的钢环与EP相对摩擦后,表面遭受了EP的严重刮擦,出现了明显的深划痕. 而以PFCN作为水润滑剂的钢环表面有明显的材料转移[见图8(c~d)],而且随着PFCN含量的提高转移物质也相应增多[见图8(e~f)]. 更重要的是,转移物质不仅填充在钢环的原始沟槽内,同时也进一步延续生长甚至铺展至钢环表面,形成薄而连续的转移膜[见图8(f)].这些转移物质在界面具有良好的承载和润滑性能,能够有效保护配副免受严重刮擦和磨损,这也相应为摩擦后EP呈现光滑表面提供了佐证.
基于钢环表面的微观形貌和转移物质分布及含量的差异,又进一步利用拉曼光谱对滴加不同含量PFCN水润滑剂后钢环表面的转移膜进行了对比分析,结果如图9所示. 可以看出,在1 600和1 346 cm−1出现了两个特征峰,分别对应G带和D带[26]. 在此重点关注的是IG/ID值,因其可反映界面转移膜的石墨化(即结构有序化)程度[26-27]. 进一步比较使用不同润滑剂时界面转移膜的IG/ID值发现:纯去离子水润滑的钢环表面转移膜的IG/ID值为0.63,说明转移物质在钢环表面基本呈无序状态,其原因可推断为EP在界面压力作用下发生的转移,之前的研究中也发现类似的结果[28]. 而采用5% PFCN和20% PFCN润滑时钢环表面转移膜的IG/ID值分别为0.97和1.06. 这说明相比纯去离子水,PFCN水润滑剂可有效促进界面物质转移,如图8(c~f)所示,并显著提高含碳物质的有序化程度. 另外,随着PFCN水润滑剂质量分数的增大,转移膜的有序化程度进一步提高. 究其原因是摩擦过程中层状蓬松结构且界面结合减弱的PFCN不断向界面转移,最终在钢环表面形成有序结构的转移膜. 拉曼光谱对钢环表面材料转移的分析结果与转移膜的微观形貌可相互印证(见图8~9).
3. 结论
a. 以柠檬酸和尿素为原料,采用一步水热法原位合成了PFCN材料. 相较于高温煅烧制得的体相CN材料,水热后PFCN的层间结构更加蓬松、结合强度进一步降低,比表面积也显著增大.
b. 采用质量分数20%的PFCN作水润滑剂,相比单纯去离子水,配副的摩擦系数和EP的磨损率分别下降了71.4%和78.1%. 原因在于水热后PFCN更易向摩擦界面转移,有效保护配副,避免其发生严重磨损.
c. PFCN作为EP-316L不锈钢配副的水润滑剂,可促进钢环表面结构更加有序转移膜的形成,提高界面的承载和润滑能力. 因此,原位水基CN作为一种新型绿色环保水润滑剂,在聚合物-金属配副的润滑设计和使用寿命延长方面具有一定的研究价值和应用潜力.
-
图 7 滴加不同质量分数PFCN水润滑剂时,纯EP试样磨损表面的光学显微镜(a,c,e)和电子显微镜(b,d,f)照片:(a,b)去离子水,(c,d)5% PFCN,(e,f) 20% PFCN
Figure 7. Optical(a,c,e) and SEM micrographs(b,d,f) of worn surfaces of neat EP specimens after sliding with 316L steel rings dropwise lubricated with various PFCN lubricants:(a,b) DI water,(c,d) 5% PFCN,(e,f) 20% PFCN
-
[1] 宋增红, 姚美焕, 梁永民, 等. 葫芦[7]脲作为水基润滑添加剂的摩擦学性能研究[J]. 摩擦学学报, 2014, 34(3): 285–290 doi: 10.16078/j.tribology.2014.03.011 Song Zenghong, Yao Meihuan, Liang Yongmin, et al. Tribological behavior of cucurbit [7] uril as lubricant additive in water-based fluids[J]. Tribology, 2014, 34(3): 285–290 doi: 10.16078/j.tribology.2014.03.011
[2] 郑哲, 方建华, 王建华, 等. 新型水溶性润滑添加剂的研究进展[J]. 摩擦学学报, 2017, 37(3): 409–420 doi: 10.16078/j.tribology.2017.03.018 Zheng Zhe, Fang Jianhua, Wang Jianhua, et al. The research progress of novel water-soluble lubricant additives[J]. Tribology, 2017, 37(3): 409–420 doi: 10.16078/j.tribology.2017.03.018
[3] 李嘉, 陈波水, 方建华, 等. 环氧丙烷改性油酸三乙醇胺作为可生物降解水基润滑添加剂研究[J]. 润滑与密封, 2006, 31(11): 21–23 doi: 10.3969/j.issn.0254-0150.2006.11.006 Li Jia, Chen Boshui, Fang Jianhua, et al. The synthesis and property of modified oleic acid triethanolamine[J]. Lubrication Engineering, 2006, 31(11): 21–23 doi: 10.3969/j.issn.0254-0150.2006.11.006
[4] 杨汉民, 向晖, 刘浩文, 等. 磷、氮改性油酸水溶性润滑添加剂的合成及摩擦学性能[J]. 润滑与密封, 2006, 31(11): 60–62,65 doi: 10.3969/j.issn.0254-0150.2006.11.017 Yang Hanmin, Xiang Hui, Liu Haowen, et al. Sythesis and tribolgical properties of phosphorous-nitrogen modified oleic acid as water-solubility lubricating additive[J]. Lubrication Engineering, 2006, 31(11): 60–62,65 doi: 10.3969/j.issn.0254-0150.2006.11.017
[5] 石宏宇, 刘宇宏, 路新春. 生物黏液的润滑特性研究进展[J]. 摩擦学学报, 2016, 36(6): 781–793 doi: 10.16078/j.tribology.2016.06.017 Shi Hongyu, Liu Yuhong, Lu Xinchun. Research progress on lubricating properties of biological mucus[J]. Tribology, 2016, 36(6): 781–793 doi: 10.16078/j.tribology.2016.06.017
[6] 顾卡丽, 刘建芳. 绿色水基润滑添加剂的研究[J]. 润滑与密封, 2005, 30(4): 126–128,161 doi: 10.3969/j.issn.0254-0150.2005.04.044 Gu Kali, Liu Jianfang. The research on a green water-based lubrication additive[J]. Lubrication Engineering, 2005, 30(4): 126–128,161 doi: 10.3969/j.issn.0254-0150.2005.04.044
[7] 熊丽萍, 王威, 穆琳, 等. 油酸咪唑啉作为水基润滑剂的摩擦学性能[J]. 润滑与密封, 2013, 38(12): 6–10,22 doi: 10.3969/j.issn.0254-0150.2013.12.002 Xiong Liping, Wang Wei, Mu Lin, et al. Tribological performance of oleic acid imidazoline as water-based lubricants[J]. Lubrication Engineering, 2013, 38(12): 6–10,22 doi: 10.3969/j.issn.0254-0150.2013.12.002
[8] 陈启, 郑少梅, 刘璐, 等. 单宁酸作为水基润滑添加剂的摩擦学特性[J]. 润滑与密封, 2018, 43(4): 64–69 doi: 10.3969/j.issn.0254-0150.2018.04.012 Chen Qi, Zheng Shaomei, Liu Lu, et al. Tribological performances of tannin acid water based lubricant additive[J]. Lubrication Engineering, 2018, 43(4): 64–69 doi: 10.3969/j.issn.0254-0150.2018.04.012
[9] 胡晓飞, 张晟卯, 余来贵, 等. 氨基黏土制备及其作为水基润滑添加剂的摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6): 672–676 doi: 10.16078/j.tribology.2015.06.004 Hu Xiaofei, Zhang Shengmao, Yu Laigui, et al. Preparation of amino clay and evaluation of its tribological properties as a water-based lubricant additive[J]. Tribology, 2015, 35(6): 672–676 doi: 10.16078/j.tribology.2015.06.004
[10] 郭效军, 蒲茂杰, 杨志刚, 等. 石墨烯/LaF3的制备及其作为水基润滑剂的摩擦学性能研究[J], 摩擦学学报, 2019 39(1): 35−42 Guo Xiaojun, Pu Maojie, Yang Zhigang, et al. Synthesis, structure and tribological properties of graphene/LaF3 composites as water-based lubricant additives[J]. Tribology, 2019 39(1): 35−42 (in Chinese)
[11] 王俊明, 李春生, 王建华, 等. 一种水溶性润滑添加剂的制备及其摩擦学性能研究[J]. 润滑与密封, 2012, 37(3): 1–6,11 doi: 10.3969/j.issn.0254-0150.2012.03.001 Wang Junming, Li Chunsheng, Wang Jianhua, et al. Synthesis and tribological properties of a water-soluble lubricant additive[J]. Lubrication Engineering, 2012, 37(3): 1–6,11 doi: 10.3969/j.issn.0254-0150.2012.03.001
[12] Wang Yong, Wang Xinchen, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68–89. doi: 10.1002/anie.201101182
[13] 张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9): 1865–1876 doi: 10.3866/PKU.WHXB201306173 Zhang Jinshui, Wang Bo, Wang Xinchen. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Physico-Chimica Sinica, 2013, 29(9): 1865–1876 doi: 10.3866/PKU.WHXB201306173
[14] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76–80. doi: 10.1038/nmat2317
[15] Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18–21. doi: 10.1021/ja308249k
[16] Chen Yu, Tan Chaoliang, Zhang Hua, et al. Two-dimensional graphene analogues for biomedical applications[J]. Chemical Society Reviews, 2015, 44(9): 2681–2701. doi: 10.1039/c4cs00300d
[17] Bu Yuyu, Chen Zhuoyuan, Li Weibing. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material[J]. Applied Catalysis B: Environmental, 2014, 144: 622–630. doi: 10.1016/j.apcatb.2013.07.066
[18] Lei Bingrong, Zhang Yaru, He Yanjin, et al. Preparation and characterization of wood-plastic composite reinforced by graphitic carbon nitride[J]. Materials & Design (1980-2015), 2015, 66: 103–109. doi: 10.1016/j.matdes.2014.10.041
[19] Zhang Ligang, Qi Huimin, Li Guitao, et al. Significantly enhanced wear resistance of PEEK by simply filling with modified graphitic carbon nitride[J]. Materials & Design, 2017, 129: 192–200. doi: 10.1016/j.matdes.2017.05.041
[20] Zhang Ligang, Li Guitao, Guo Yuexia, et al. PEEK reinforced with low-loading 2D graphitic carbon nitride nanosheets: high wear resistance under harsh lubrication conditions[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 507–516. doi: 10.1016/j.compositesa.2018.04.002
[21] Duan Chunjian, Yuan Dongming, Yang Zenghui, et al. High wear-resistant performance of thermosetting polyimide reinforced by graphitic carbon nitride (g-C3N4) under high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 200–208. doi: 10.1016/j.compositesa.2018.07.008
[22] Wu Liangfei, Zhang Zhaozhu, Yang Mingming, et al. One-step synthesis of g-C3N4 nanosheets to improve tribological properties of phenolic coating[J]. Tribology International, 2019, 132: 221–227. doi: 10.1016/j.triboint.2018.12.027
[23] 王建华, 宋敏, 李金龙, 等. 水溶性纳米二氧化硅添加剂的制备及摩擦学性能研究[J]. 摩擦学学报, 2011, 31(2): 118–123 doi: 10.16078/j.tribology.2011.02.002 Wang Jianhua, Song Min, Li Jinlong, et al. The preparation and tribological properties of water-soluble nano-silica particales[J]. Tribology, 2011, 31(2): 118–123 doi: 10.16078/j.tribology.2011.02.002
[24] Zou Jianping, Wang Laichun, Luo Jinming, et al. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 193: 103–109. doi: 10.1016/j.apcatb.2016.04.017
[25] Zhang Ligang, Guo Yuexia, Xu Huanfei, et al. A novel eco-friendly water lubricant based on in situ synthesized water-soluble graphitic carbon nitride[J]. Chemical Engineering Journal, 2021, 420: 129891. doi: 10.1016/j.cej.2021.129891
[26] 唐卡, 宋汝鸿, 胡恩柱, 等. 往复滑动干摩擦条件下碳烟颗粒的摩擦学特性研究[J]. 摩擦学学报, 2015, 35(2): 198–205 doi: 10.16078/j.tribology.2015.02.011 Tang Ka, Song Ruhong, Hu Enzhu, et al. Tribological behavior of soot particles under reciprocal dry sliding condition[J]. Tribology, 2015, 35(2): 198–205 doi: 10.16078/j.tribology.2015.02.011
[27] 潘泽宇, 康凯, 覃天涯, 等. 表面织构对含氟化物碳烟颗粒干摩擦性能影响[J]. 广州化工, 2019, 47(17): 73–76 doi: 10.3969/j.issn.1001-9677.2019.17.026 Pan Zeyu, Kang Kai, Qin Tianya, et al. Surface texture on dry friction performance for bio-fuel soot with fluoride[J]. Guangzhou Chemical Industry, 2019, 47(17): 73–76 doi: 10.3969/j.issn.1001-9677.2019.17.026
[28] Zhao Fuyan, Zhang Ligang, Li Guitao, et al. Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide[J]. Carbon, 2018, 136: 309–319. doi: 10.1016/j.carbon.2018.05.002
-
期刊类型引用(1)
1. 陈林燕,康桂蓉,钟林,何海洋,张荣耀,何霞,陶伟. 孔板阀滑阀自锁装置球/盘配对副耐磨性能实验研究. 机械科学与技术. 2022(12): 1950-1957 . 百度学术
其他类型引用(1)