-
摘要: 为了研究微织构尺寸对滑动轴承摩擦磨损性能的影响,基于滑动轴承摩擦磨损理论模型及摩擦磨损试验,通过设计不同的微织构尺寸,研究了滑动轴承的摩擦磨损性能随微织构尺寸的变化规律. 结果表明:在摩擦磨损理论模型中,随着微织构尺寸的增加,滑动轴承润滑性能呈先提高后降低趋势,在无量纲微织构半径是
√2 时轴承具有最优的润滑性能;微织构的磨损性能随着微织构深度的增加大致呈先降低后升高趋势,在无量纲深度为0.03时,滑动轴承磨损性能最优;微织构尺寸半径是√4 和√5 时,磨损量相对较小. 在摩擦试验中,微织构半径是0.17 mm时润滑性能最优,平均摩擦系数相比微织构半径为0.1 mm时降低了7.1%,同时表面形貌磨损明显小于其他尺寸时的试件. 理论和试验均表明,合适的微织构尺寸可以有效提高滑动轴承的润滑性能、降低摩擦系数及减小磨损.Abstract: In order to study the effect of micro-texture size on the friction and wear characteristics of journal bearing, using the theoretical model of friction and wear of journal bearing and the method of friction experiments, the rule of friction and wear performance with different micro-texture sizes was analyzed. The results showed that with the increase of micro-texture size, the lubrication performance of the journal bearing increased firstly and then decreased in the theoretical model of friction and wear. The optimal lubrication performance occurred at the dimensionless radius of√2 . With the increase of micro-texture depth, the wear performance of the journal bearing decreased firstly and then increased. When the dimensionless depth was 0.03, the journal bearing had the best wear performance. When the micro-texture radius was√4 and√5 , the wear was low. In the friction experiment, the lubricating performance was the best as the micro-texture radius was 0.17mm, and the average friction coefficient was 7.1% lower than that for the micro-texture radius of 0.1mm. And the surface morphology wear was significantly smaller than other sizes pieces. Both theory and experiment proved that proper micro-texture size improved effectively the lubrication performance, reduced the friction coefficient and the wear of journal bearings. -
-
-
[1] Shinde A B, Pawar P M. Multi-objective optimization of surface textured journal bearing by Taguchi based Grey relational analysis[J]. Tribology International, 2017, 114: 349–357. doi: 10.1016/j.triboint.2017.04.041
[2] Yu Haiwu, Wang Xiaolei, Zhou Fei. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J]. Tribology Letters, 2010, 37(2): 123–130. doi: 10.1007/s11249-009-9497-4
[3] Zhang Yu, Chen Guoding, Wang Lin. Thermoelastohydrodynamic analysis of misaligned bearings with texture on journal surface under high-speed and heavy-load conditions[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1331–1342. doi: 10.1016/j.cja.2018.08.005
[4] Dong Jian, Wang Xiaojing, Zhang Jin, et al. An experimental research on the vibration of surface-textured journal bearings[J]. Shock and Vibration, 2017, 2017: 1–9. doi: 10.1155/2017/1261826
[5] Rao T V V L N, Rani A M A, Nagarajan T, et al. Analysis of couple stress fluid lubricated partially textured slip slider and journal bearing using narrow groove theory[J]. Tribology International, 2014, 69: 1–9. doi: 10.1016/j.triboint.2013.08.006
[6] 苏峰华, 毛川, 李助军. 织构深度对不锈钢表面油润滑条件下摩擦学性能影响的试验和仿真研究[J]. 摩擦学学报, 2019, 39(2): 181–187 doi: 10.16078/j.tribology.2018143 Su Fenghua, Mao Chuan, Li Zhujun. Experiment and simulation study on the effect of texture depth on tribological properties of stainless steel surface under oil lubricating condition[J]. Tribology, 2019, 39(2): 181–187 doi: 10.16078/j.tribology.2018143
[7] Wang Lili, Guo Shaohui, Wei Yuliang, et al. Optimization research on the lubrication characteristics for friction pairs surface of journal bearings with micro texture[J]. Meccanica, 2019, 54(8): 1135–1148. doi: 10.1007/s11012-019-01015-1
[8] Yuan Shuo, Lin Naiming, Zou Jiaojuan, et al. Effect of laser surface texturing (LST) on tribological behavior of double glow plasma surface zirconizing coating on Ti6Al4V alloy[J]. Surface and Coatings Technology, 2019, 368: 97–109. doi: 10.1016/j.surfcoat.2019.04.038
[9] Urbaniak W, Kaldonski T, Hagner-Derengowska M, et al. Impregnated porous bearings textured with a pocket on sliding surfaces: comparison of h-boron nitride with graphite and molybdenum disulphide up to 150 ℃[J]. Meccanica, 2015, 50(5): 1343–1349. doi: 10.1007/s11012-014-0095-7
[10] 李一楠, 张勇, 冯天明, 等. 放电沉积凸貌微织构表面动压润滑性能仿真研究[J]. 表面技术, 2019, 48(8): 59–67 doi: 10.16490/j.cnki.issn.1001-3660.2019.08.009 Li Yinan, Zhang Yong, Feng Tianming, et al. Simulation study on hydrodynamic lubrication performance of convex texture surface based on discharge deposition[J]. Surface Technology, 2019, 48(8): 59–67 doi: 10.16490/j.cnki.issn.1001-3660.2019.08.009
[11] Zhang Zhao, Lu Wenzhuang, He Yafeng, et al. Research on optimal laser texture parameters about antifriction characteristics of cemented carbide surface[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 287–296. doi: 10.1016/j.ijrmhm.2019.05.008
[12] Kümmel D, Hamann-Schroer M, Hetzner H, et al. Tribological behavior of nanosecond-laser surface textured Ti6Al4V[J]. Wear, 2019, 422-423: 261–268. doi: 10.1016/j.wear.2019.01.079
[13] 鹿重阳, 杨学锋, 王守仁, 等. 三角沟槽形织构化硬质合金工作表面动压润滑及减摩特性[J]. 摩擦学学报, 2018, 38(5): 537–546 doi: 10.16078/j.tribology.2018.05.006 Lu Chongyang, Yang Xuefeng, Wang Shouren, et al. Dynamic pressure lubrication and anti-friction characteristics of the working surface of the cemented carbide with triangular grooved microtexture[J]. Tribology, 2018, 38(5): 537–546 doi: 10.16078/j.tribology.2018.05.006
[14] Li Jianliang, Xiong Dangsheng, Dai Jihui, et al. Effect of surface laser texture on friction properties of nickel-based composite[J]. Tribology International, 2010, 43(5-6): 1193–1199. doi: 10.1016/j.triboint.2009.12.044
[15] Zhu Dong, Martini A, Wang Wenzhong, et al. Simulation of sliding wear in mixed lubrication[J]. Journal of Tribology, 2007, 129(3): 544–552. doi: 10.1115/1.2736439
[16] Okamoto Y, Kitahara K, Ushijima K, et al. A study for wear and fatigue on engine bearings by using EHL analysis[J]. JSAE Review, 2000, 21(2): 189–196. doi: 10.1016/S0389-4304(99)00092-2
[17] 丁行武, 王家序, 郭胤, 等. 基于滑动摩擦的摩擦副表面织构优化分析[J]. 四川大学学报(工程科学版), 2013, 45(S1): 183–188 doi: 10.15961/j.jsuese.2013.s1.030 Ding Xingwu, Wang Jiaxu, Guo Yin, et al. Optimization analysis of the surface texture of friction pair based on sliding friction[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(S1): 183–188 doi: 10.15961/j.jsuese.2013.s1.030
[18] Reis J O D, Rodrigues G W, Bittencourt M L. Virtual texturing of lightweight engine crankshaft bearings[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(6): 1–15. doi: 10.1007/s40430-019-1740-9
-
期刊类型引用(19)
1. 顾梅玲,辛洪兵,贾宏丽,方钱升,胡锋,郭彭飞. 无柔性轴承谐波齿轮传动凸轮表面仿生微凹坑结构参数设计. 轻工科技. 2024(01): 56-59 . 百度学术
2. 袁丕琪,房纪涛,王立群,梁浩,付秀丽. 金属构件表面织构摩擦学性能的研究进展. 制造技术与机床. 2024(05): 114-121 . 百度学术
3. 李志浩,郭旭红,张克栋,王呈栋,刘同舜. Fe_3O_4纳米流体润滑下微织构Si_3N_4陶瓷摩擦学性能研究. 摩擦学学报(中英文). 2024(06): 763-774 . 百度学术
4. 刘通,郭春海,张文武,马剑强. 长方形微织构多参数耦合对油膜性能的影响. 计算机仿真. 2024(06): 375-382 . 百度学术
5. 王保民,赵瑞平,黄贵林,王慧心,邬再新. 滑动摩擦副表面非对称微织构空化效应数值分析. 摩擦学学报(中英文). 2024(07): 937-946 . 百度学术
6. 纪成龙,吕廓,朱胜旺,刘炜程,王成金,郑宏宇,王志文. 激光烧蚀方式对织构化球墨铸铁摩擦磨损性能的影响. 电镀与涂饰. 2024(07): 68-75 . 百度学术
7. 陈锐,赵滨,屠力月,何涛,钟宁,邹德全. 低速柴油机主轴承热弹流混合润滑与磨损耦合特性研究. 船舶力学. 2024(11): 1768-1779 . 百度学术
8. 吴科阳,徐泽华,刘承洲,赵德永,尹成斌,马贝贝,王远. 水土溶液润滑下犁铧表面仿生微织构的减摩抗磨特性研究. 表面技术. 2024(21): 112-120+207 . 百度学术
9. 于英华,周乐,阮文新,徐平,沈佳兴. 特形微织构多油楔滑动轴承特性分析及优化. 西北工业大学学报. 2023(01): 222-229 . 百度学术
10. 王丽丽,张伟,葛雪,段敬东. 复合微织构排列方式对轴承润滑性能的影响. 中国表面工程. 2023(01): 145-155 . 百度学术
11. 郭红,秦立闯,石明辉,张绍林. 耦合因素对混合润滑滑动轴承特性的影响. 华南理工大学学报(自然科学版). 2023(05): 141-150 . 百度学术
12. 王丽丽,段敬东,李龙超,刘迎澳,包云龙. 考虑粗糙度的水润滑复合微织构推力轴承性能分析. 表面技术. 2023(06): 256-265+409 . 百度学术
13. 江志伟,王志伟,楚明,莫继良,赵婧. 考虑温度的高速列车轴箱轴承内部接触特性分析. 重庆理工大学学报(自然科学). 2023(08): 109-118 . 百度学术
14. 王保民,赵瑞平,房文博,闫瑞祥,刘洪芹. 表面织构排布方式对径向滑动轴承摩擦性能的影响. 润滑与密封. 2023(09): 47-54 . 百度学术
15. 张美楠,张丹,李君华,钱建华. 油酸修饰纳米硼酸锌的摩擦学性能研究. 现代化工. 2023(S1): 219-223 . 百度学术
16. 罗庆,董庆兵,赵滨,魏静,杨海师. 分片式可变间隙径向滑动轴承混合润滑研究. 摩擦学学报. 2023(11): 1285-1298 . 本站查看
17. 王保民,南洋. 非对称结构表面织构对滑动轴承摩擦性能的影响. 润滑与密封. 2022(02): 1-7 . 百度学术
18. 王泽霄,陈文刚,张禄中,郝星星,尹红泽,郭文轩,井培尧,张桔帮. 几何特征及工况条件对表面织构摩擦特性影响研究. 表面技术. 2022(10): 89-100 . 百度学术
19. 陈文刚,毛宇坤. 表面织构技术改善发动机曲轴轴承摩擦学性能. 科学技术与工程. 2022(34): 14999-15010 . 百度学术
其他类型引用(25)