ISSN   1004-0595

CN  62-1224/O4

高级检索

Ni3Al基涂层与不同材料配副时宽温域的摩擦学行为

范祥娟, 李文生, 杨军, 朱圣宇, 程军, 何东青

范祥娟, 李文生, 杨军, 朱圣宇, 程军, 何东青. Ni3Al基涂层与不同材料配副时宽温域的摩擦学行为[J]. 摩擦学学报, 2020, 40(6): 687-696. DOI: 10.16078/j.tribology.2020036
引用本文: 范祥娟, 李文生, 杨军, 朱圣宇, 程军, 何东青. Ni3Al基涂层与不同材料配副时宽温域的摩擦学行为[J]. 摩擦学学报, 2020, 40(6): 687-696. DOI: 10.16078/j.tribology.2020036
FAN Xiangjuan, LI Wensheng, YANG Jun, ZHU Shengyu, CHENG Jun, HE Dongqing. Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range[J]. TRIBOLOGY, 2020, 40(6): 687-696. DOI: 10.16078/j.tribology.2020036
Citation: FAN Xiangjuan, LI Wensheng, YANG Jun, ZHU Shengyu, CHENG Jun, HE Dongqing. Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range[J]. TRIBOLOGY, 2020, 40(6): 687-696. DOI: 10.16078/j.tribology.2020036
范祥娟, 李文生, 杨军, 朱圣宇, 程军, 何东青. Ni3Al基涂层与不同材料配副时宽温域的摩擦学行为[J]. 摩擦学学报, 2020, 40(6): 687-696. CSTR: 32261.14.j.tribology.2020036
引用本文: 范祥娟, 李文生, 杨军, 朱圣宇, 程军, 何东青. Ni3Al基涂层与不同材料配副时宽温域的摩擦学行为[J]. 摩擦学学报, 2020, 40(6): 687-696. CSTR: 32261.14.j.tribology.2020036
FAN Xiangjuan, LI Wensheng, YANG Jun, ZHU Shengyu, CHENG Jun, HE Dongqing. Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range[J]. TRIBOLOGY, 2020, 40(6): 687-696. CSTR: 32261.14.j.tribology.2020036
Citation: FAN Xiangjuan, LI Wensheng, YANG Jun, ZHU Shengyu, CHENG Jun, HE Dongqing. Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range[J]. TRIBOLOGY, 2020, 40(6): 687-696. CSTR: 32261.14.j.tribology.2020036

Ni3Al基涂层与不同材料配副时宽温域的摩擦学行为

基金项目: 甘肃省国际科技合作特派员计划(17JR7WA017),国家重点研发计划国际科技合作项目(2016YFE0111400),国家自然科学基金项目(51674130)和甘肃省重点研发计划项目(17YF1WA159)资助
详细信息
  • 中图分类号: TH117.1

Tribological Behaviors of Ni3Al-Based Coating Coupled with Different Counterpart Materials in Wide Temperature Range

Funds: The project was supported by Gansu Special Commissioner Program for the International Scientific and Technological Cooperation (17JR7WA017),the International Science and Technology Cooperation Projects of National Key R&D Programs (2016YFE0111400) and the National Natural Science Foundation of China (51674130) and Key Research and Development project in Gansu(17YF1WA159)
More Information
    Corresponding author:

    LI Wensheng: E-mail: liws@lut.edu.cn, Tel: +86-931-2973567, +86-13919250687

  • 摘要: 采用等离子喷涂法制备Ni3Al基涂层,分别以316L和Al2O3为摩擦偶件,考察25~800 ℃内摩擦偶件材料对涂层摩擦学行为的影响. 结果表明:在软金属Ag析出、BaF2/CaF2脆-塑性转变和摩擦氧化协同作用下,随温度升高Ni3Al/316L和Ni3Al/Al2O3摩擦副的摩擦系数和磨损率具有一致的变化规律,且Ni3Al/Al2O3摩擦副性能更佳. 25 ℃时,涂层与316L对摩时发生黏着磨损和磨粒磨损,而与高硬度的Al2O3对摩时发生脆性剥层和磨粒磨损,使涂层表面更粗糙导致较高的摩擦系数;Al2O3热导率较低,高接触应力作用下产生的大量摩擦热不能及时耗散,剥落材料贮存于剥落坑或黏附于磨损表面,使Ni3Al/Al2O3摩擦副具有较低的磨损率. 200~600 ℃时,高硬度的Al2O3对涂层的犁削作用较强导致Ni3Al/Al2O3摩擦副具有高的摩擦系数;而涂层在Al2O3碾压下发生塑性变形,使其具有较低的磨损率. 800 ℃时,高硬度的Al2O3促使磨损表面形成高氧化物含量的润滑膜,使Ni3Al/Al2O3摩擦副具有低的摩擦系数和高的磨损率.
    Abstract: The Ni3Al based composite coating was prepared by plasma spraying. The influences of 316L and Al2O3 counterpart material on the tribological behaviors of the coating at 25 ℃ to 800 ℃ were investigated. The results showed that under the synergistic action of precipitation of soft metal Ag, brittle-plastic transformation of BaF2/CaF2 and tribo-oxidation, the friction coefficient and wear rate of Ni3Al/316L and Ni3Al/Al2O3 tribo-pairs had the similar trend with the increase of temperature, and the Ni3Al/Al2O3 tribo-pairs had better performance. At 25 ℃, the coating coupled with 316L adhesive wear and abrasive wear occurred, while brittle peeling and abrasive wear occurred when the coating coupled with Al2O3 of high hardness, resulting in rougher coating surface and higher friction coefficient. However, the thermal conductivity of Al2O3 was low, and a large amount of frictional heat generated under the action of high contact stress cannot be dissipated rapidly. The stripped material was stored in the peeling hole or adhered to the worn surface, resulting in a lower wear rate of Ni3Al/Al2O3 friction pair. At 200~600 ℃, the Al2O3 of high hardness had a strong plough effect on the coating, resulting in a higher friction coefficient of Ni3Al/Al2O3 friction pair. Meanwhile, Al2O3 promoted the plastic deformation of the coating, inhibited the fatigue stripping of the material, and made the coating with lower wear rate. At 800 ℃, the high hardness of Al2O3 promoted the formation of a lubrication film with high oxide content on the worn surface, so that the Ni3Al/Al2O3 friction pair had low friction coefficient but high wear rate.
  • 图  1   25~800 ℃内涂层分别与316L和Al2O3对摩时摩擦系数的变化曲线

    Figure  1.   Friction coefficient curves of the coating varying with temperature coupled with 316L and Al2O3

    图  2   25~800 ℃内涂层分别与316L和Al2O3对摩时涂层磨损率的变化曲线

    Figure  2.   Curves of the wear rate of the coating varying with temperature coupled with 316L and Al2O3

    图  3   涂层与316L在不同温度下对摩时磨损表面形貌的SEM照片:(a) 25 ℃;(b) 200 ℃;(c) 400 ℃;(d) 600 ℃;(e) 800 ℃

    Figure  3.   SEM micrographs of worn surfaces of the coating coupled with 316L:(a) 25 ℃;(b) 200 ℃;(c) 400 ℃;(d) 600 ℃;(e) 800 ℃

    图  4   涂层与Al2O3对摩时磨损表面形貌的SEM照片:(a) 25 ℃;(b) 200 ℃;(c) 400 ℃;(d) 600 ℃;(e) 800 ℃

    Figure  4.   SEM micrographs of worn surfaces of the coating coupled with Al2O3:(a) 25 ℃;(b) 200 ℃;(c) 400 ℃;(d) 600 ℃;(e) 800 ℃

    图  5   25 ℃时磨损表面局部放大、磨屑形貌和磨痕截面轮廓:(a~c) Ni3Al/316L;(d~f) Ni3Al/Al2O3

    Figure  5.   The enlarged wear surface,debris appearances and section profiles at 25 ℃:(a~c) Ni3Al/316L;(d~f) Ni3Al/Al2O3

    图  6   316L和Al2O3的硬度随温度变化曲线

    Figure  6.   The hardness of 316L andAl2O3 at elevated temperature

    图  7   400 ℃时磨痕和磨屑形貌局部放大

    Figure  7.   The local magnification of wear morphology and wear debris at 400 ℃

    图  8   磨损表面拉曼谱图

    Figure  8.   Raman spectra of the worn surface

    图  9   800 ℃时磨损表面XPS拟合谱:(a~e) Ni3Al/316L;(f~i) Ni3Al/Al2O3

    Figure  9.   The fitted XPS spectra of the wear surfaces at 800 ℃:(a~e) Ni3Al/316L;(f~i) Ni3Al/Al2O3

    图  10   800 ℃时磨斑形貌、局部放大和拉曼谱图:(a~c) Ni3Al/316L;(d~f) Ni3Al/Al2O3

    Figure  10.   The wear morphology,local magnification and Raman spectra of counterpart balls at 800 ℃:(a~c) Ni3Al/316L;(d~f) Ni3Al/Al2O3

    表  1   等离子喷涂参数

    Table  1   The plasma spraying parameters for the Ni3Al matrix composite coating

    Current/
    A
    Voltage/
    V
    Ar flowrate,
    L/min
    H2 flowrate,
    L/min
    Spray distance/
    mm
    500801409100
    下载: 导出CSV

    表  2   316L和Al2O3摩擦偶件的室温物理性能和机械性能

    Table  2   Physical and mechanical properties of 316L and Al2O3 counterpart balls at room temperature

    MaterialDensity/(g/cm3)Hardness/HVThermal conductivity/[W/(m·k)]Maximum contact pressure/GPa
    316L7.87326.6915.11.40
    Al2O33.951 680.30201.65
    下载: 导出CSV

    表  3   25 ℃时不同摩擦副中磨屑的主要成分

    Table  3   EDS analysis results of the debris of different tribo-pairs at 25 ℃ (weight fraction)

    Friction pairsw(Ni)/%w(Fe)/%w(Al)/%w(Cr)/%w(Ba)/%w(O)/%w(Ag)/%w(Ca)/%
    Ni3Al/316L80.25.85.62.71.81.70.40.2
    Ni3Al/Al2O364.610.45.36.85.62.10.9
    下载: 导出CSV
  • [1]

    Sliney H E. Wide temperature spectrum self-lubricating coatings prepared by plasma spraying[J]. Thin Solid Films, 1979, 64: 211–217. doi: 10.1016/0040-6090(79)90511-X

    [2]

    Dellacorte C, Fellenstein J A. The effect of compositional tailoring on the thermal expansion and tribological properties of PS300: a solid lubricant composite coating[J]. Tribology Transactions, 1997, 40: 639–642. doi: 10.1080/10402009708983703

    [3]

    Dellacorte C. The evaluation of a modified chrome oxide based high temperature solid lubricant coating for foil gas bearings[J]. Tribology Transactions, 2000, 43: 257–262. doi: 10.1080/10402000008982337

    [4]

    Stanford M K, Yanke A M, DellaCorte C. Thermal effects on a low Cr modification of PS304 solid lubricant coating[P]. TM-2003-213111, 2004.

    [5]

    Sliney H E, Dellacorte C, Lukaszewicz V. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system[J]. Tribology Transactions, 1995, 38(3): 497–506. doi: 10.1080/10402009508983435

    [6]

    Dellacorte C, Edmonds B. NASA PS400: a new high temperature solid lubricant coating for high temperature wear applications[P]. TM-2010-216774, 2009.

    [7]

    Chen X, Xu J F, Sun Q Q, et al. Characterization of intermetallic bonded TiC composites prepared by mechanically induced self-sustained reaction[J]. Materials and Design, 2016, 89: 102–108. doi: 10.1016/j.matdes.2015.09.158

    [8]

    Li F, Cheng J, Qiao Z H, et al. A nickel-alloy-based high-temperature self-lubricating composite with simultaneously superior lubricity and high strength[J]. Tribology Letters, 2013, 49: 573–577. doi: 10.1007/s11249-012-0101-y

    [9]

    Shi X L, Song S Y, Zhai W Z, et al. Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C[J]. Materials and Design, 2014, 55: 75–84. doi: 10.1016/j.matdes.2013.09.051

    [10]

    Deng W, Li S J, Hou G L, et al. Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts[J]. Ceramics International, 2017, 43: 6976–6986. doi: 10.1016/j.ceramint.2017.02.122

    [11] 李文生, 范祥娟, 杨军, 等. Ni3Al基高温自润滑复合涂层的制备和摩擦学性能[J]. 摩擦学学报, 2018, 38(6): 626–634 doi: 10.16078/j.tribology.2018033

    Li Wensheng, Fan Xiangjuan, Yang Jun, et al. Preparation and tribological properties of Ni3Al matrix self-lubricating composite coating[J]. Tribology, 2018, 38(6): 626–634 doi: 10.16078/j.tribology.2018033

    [12] 范祥娟, 李文生, 杨军, 等. 载荷对Ni3Al基自润滑复合涂层摩擦学行为的影响[J]. 摩擦学学报, 2019, 39(4): 419–426 doi: 16078/j.tribology.2018198

    Fan Xiangjuan, Li Wensheng, Yang Jun, et al. Effect of loads on tribological behaviors of Ni3Al matrix self-lubricating composite coating[J]. Tribology, 2019, 39(4): 419–426 doi: 16078/j.tribology.2018198

    [13]

    Yu Z G, Tan H, Wang S, et al. High-temperature tribological behaviors of MoAlB ceramics sliding against Al2O3 and Inconel 718 alloy[J]. Ceramics International, 2020, 46(10): 14713–14720. doi: 10.1016/j.ceramint.2020.02.275

    [14]

    Valefi M, Pathiraj B D, Rooij M D, et al. Influence of counter surface materials on dry sliding performance of CuO/Y-TZP composite at 600 ℃[J]. Journal of the European Ceramic Society, 2012, 32: 4137–4147. doi: 10.1016/j.jeurceramsoc.2012.07.025

    [15]

    Kong L Q, Bi Q L, Niu M Y, et al. ZrO2 (Y2O3)-MoS2-CaF2 self lubricating composite coupled with different ceramics from 20 ℃ to 1000 ℃[J]. Tribology Letters, 2013, 64: 53–62. doi: 10.1016/j.triboint.2013.02.027

    [16] 孙玉利, 左敦稳, 朱永伟, 等. 不同摩擦偶件对单晶硅摩擦磨损行为影响的对比研究[J]. 硅酸盐学报, 2011, 39(6): 1028–1033 doi: CNKI:SUN:GXYB.0.2011-06-030

    Sun Yuli, Zuo Dunwen, Zhu Yongwei, et al. Comparative study on effects of different counterparts on friction and wear behavior of single crystal silicon[J]. Journal of the Chinese Ceramic Society, 2011, 39(6): 1028–1033 doi: CNKI:SUN:GXYB.0.2011-06-030

    [17]

    Badisch E, Fontalvo G A, Mitterer C. The response of PACVD TiN coatings to tribological tests with different counterparts[J]. Wear, 2004, 256: 95–99. doi: 10.1016/S0043-1648(03)00391-0

    [18] 段文博, 孙岩桦, 丁春华, 等. 滑动速度对IS304涂层自润滑磨损机理的影响[J]. 摩擦学学报, 2015, 32(2): 147–153 doi: 10.16078/j.tribology.2015.02.004

    Duan Wenbo, Sun Yanhua, Ding Chunhua, et al. The effect of sliding speed on the wear mechanisms of IS304 self-lubricating coating[J]. Tribology, 2015, 32(2): 147–153 doi: 10.16078/j.tribology.2015.02.004

    [19]

    Hiratsuka K, Abe Y, Kawashima S. Effect of in-situ electroless plating on friction and wear of metals[J]. Wear, 2003, 255(7-12): 910–916. doi: 10.1016/S0043-1648(03)00108-X

    [20]

    George E P, Liu C T, Pope D P. Intrinsic ductility and environmental embrittlement of binary Ni3Al[J]. Scripta Metallurgica et Materialia, 1993, 28(7): 857–862. doi: 10.1016/0956-716X(93)90366-Z

    [21] 米雪, 谢海, 彭金方, 等. 690合金传热管在不同摩擦副条件下的微动磨损性能研究[J]. 摩擦学学报, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199

    Mi Xue, Xie Hai, Peng Jinfang, et al. The effect of mating material on the fretting wear behavior of 690 alloy[J]. Tribology, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199

    [22]

    Benkahoul M, Robin P, Martinu L, et al. Tribological properties of duplex Cr-Si-N coatings on SS410 steel[J]. Surface and Coatings Technology, 2009, 203(8): 934–940. doi: 10.1016/j.surfcoat.2008.07.036

    [23] 张国涛, 尹延国, 刘振明, 等. 复层铁基粉末冶金材料的摩擦学性能[J]. 材料热处理学报, 2017, 38(1): 7–13 doi: CNKI:SUN:JSCL.0.2017-01-002

    Zhang Guotao, Yin Yanguo, Liu zhenming, et al. Tribological properties of multi-layer iron based powder metallurgy materials[J]. Transactions of Materials and Heat Treatment, 2017, 38(1): 7–13 doi: CNKI:SUN:JSCL.0.2017-01-002

    [24] 俞友军, 周健松, 陈建敏, 等. 激光熔覆NiCr/Cr3C2-Ag-BaF2/CaF2金属基高温自润滑耐磨覆层的组织结构及摩擦学性能[J]. 中国表面工程, 2010, 23(3): 64–73 doi: 10.3969/j.issn.1007-9289.2010.03.014

    Yu Youjun, Zhou Jiansong, Chen Jianmin, et al. Microstructure and tribological behavior of laser cladding NiCr/Cr3C2-Ag-BaF2/CaF2 self-lubrication wear-resistant metal matrix composite coating[J]. China Surface Engineering, 2010, 23(3): 64–73 doi: 10.3969/j.issn.1007-9289.2010.03.014

图(10)  /  表(3)
计量
  • 文章访问数:  1453
  • HTML全文浏览量:  385
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-05-12
  • 录用日期:  2020-05-25
  • 网络出版日期:  2020-11-16
  • 发布日期:  2020-11-27

目录

    /

    返回文章
    返回