ISSN   1004-0595

CN  62-1224/O4

高级检索

SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究

金延文, 曲彦平, 王东, 肖伯律, 王全兆, 倪丁瑞, 马宗义

金延文, 曲彦平, 王东, 肖伯律, 王全兆, 倪丁瑞, 马宗义. SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035
引用本文: 金延文, 曲彦平, 王东, 肖伯律, 王全兆, 倪丁瑞, 马宗义. SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035
JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035
Citation: JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. DOI: 10.16078/j.tribology.2020035
金延文, 曲彦平, 王东, 肖伯律, 王全兆, 倪丁瑞, 马宗义. SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2021, 41(3): 334-343. CSTR: 32261.14.j.tribology.2020035
引用本文: 金延文, 曲彦平, 王东, 肖伯律, 王全兆, 倪丁瑞, 马宗义. SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究[J]. 摩擦学学报, 2021, 41(3): 334-343. CSTR: 32261.14.j.tribology.2020035
JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. CSTR: 32261.14.j.tribology.2020035
Citation: JIN Yanwen, QU Yanping, WANG Dong, XIAO Bolu, WANG Quanzhao, NI Dingrui, MA Zongyi. Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles[J]. TRIBOLOGY, 2021, 41(3): 334-343. CSTR: 32261.14.j.tribology.2020035

SiC与球形石墨颗粒混杂增强铝基复合材料的摩擦磨损性能研究

基金项目: 国家自然科学基金项目(51671191,51771193)资助
详细信息
  • 中图分类号: TH117.1

Sliding Wear Behavior of Aluminum Matrix Composites Hybrid Reinforced by SiCp and Spherical Graphite Particles

Funds: This work was supported by the National Natural Science Foundation of China (51671191, 51771193)
More Information
    Corresponding author:

    NI Dingrui: E-mail: drni@imr.ac.cn, Tel: +86-24-23971749

  • 摘要: 以6092铝合金为基体,通过粉末冶金法分别制备了球形石墨颗粒(Gr)以及SiCp和Gr混杂增强的铝基复合材料,并采用田口模型结合方差分析,对复合材料与铜合金摩擦副之间的干滑动摩擦磨损行为进行了分析研究. 结果表明:随着载荷从10 N增至20 N,3种复合材料的摩擦系数、磨损率均相应增加;随滑动速率从0.5 m/s增至1.0 m/s,15%Gr/6092Al和(5%Gr+20%SiCp)/6092Al的摩擦系数先减小后增大;而(5%Gr+10%SiCp)/6092Al的摩擦系数呈递减趋势. 相同条件下,单一石墨颗粒增强的复合材料的磨损率大于混杂增强的复合材料的磨损率. 方差分析的结果表明:增强相百分比单独作用、增强相百分比和滑动速率相互作用以及滑动速率单独作用3个因素对磨损率和摩擦系数产生了显著的影响. 随SiCp含量增加,材料硬度增加,SiCp对基体起到支撑保护作用,磨损面上的磨痕变浅,分层剥落现象明显减轻,磨屑变得细小,摩擦系数更为稳定,磨损机制由剥层磨损向磨粒磨损转变.
    Abstract: Spherical graphite particles (Gr) particles and (Gr+SiCp) hybrid reinforced 6092Al composites were prepared via powder metallurgy. The dry sliding friction and wear behaviors of the composites were investigated. The results showed that as the load increased from 10 N to 20 N, the friction coefficient and wear rate of the three composites increased correspondingly; the wear sliding speed increased from 0.5 m/s to 1.0 m/s, and the friction coefficients of 15%Gr/6092Al and (5%Gr+20% SiCp)/6092Al firstly decreased and then increased; while (5%Gr+10% SiCp)/6092Al decreased. When the other conditions were the same, 15%Gr/6092Al composites showed higher wear rate than the hybrid reinforced composites. The results of the analysis of variance showed that the three factors, the effect of the reinforcement phase percentage alone, the interaction between the reinforcement phase percentage and the sliding rate, and the sliding speed alone, have a significant impact on the wear rate and the friction coefficient. With the increase of SiCp content, the hardness of the material increased, and the SiCp acted as a supporting and protective role on the Al matrix. The wear marks on the wear surface became shallow, the phenomenon of delamination exfoliation was obviously alleviated, the debris became fine, and the friction coefficient was more stable, and the wear mechanism changed from delamination wear to abrasive wear.
  • 颗粒增强铝基复合材料(Aluminium matrix composites,AMC)是由铝合金基体与增强体(多为陶瓷类颗粒)经设计、复合而成的新材料,综合了铝合金良好的强度、韧性与易成型性等优点以及增强体的高强、高模和耐磨等优点. 因其高的比强度、比模量,良好的导热、耐磨性能,以及低热膨胀系数、高尺寸稳定性等优异的力学与物理性能,在航天航空、电子、汽车以及先进武器系统中具有广阔的应用前景[1-3].

    由两种或两种以上增强体构成的混杂增强模式,可发挥多种增强体各自的优势,取得比单一增强体更好的效果[4-6]. SiC具有高强度、高硬度、高模量、低膨胀系数等许多优点,是AMC的理想增强体[2, 7-11]. 中间相炭微球是一种新型功能材料,具有超高的比表面积、吸附能力、堆积密度,良好的化学稳定性、热稳定性以及优良的导电和导热性能[12-14]. 石墨化中间相炭微球(Graphitized mesophase carbon microspheres,GMCMB)即球形石墨颗粒的结晶度高、强度高,是一种理想的润滑材料. 因此,经过合理设计的混杂复合模式可有效改善材料的摩擦磨损性能[15-17],使之具有适当而稳定的摩擦系数和低的摩擦对偶损伤特性.

    在各种材料的开发中,Taguchi、方差分析(ANOVA)以及各种仿真模型对材料磨损和摩擦性能的研究也越来越广泛[18-25]. 采用粉末冶金法制备了SiCp和石墨化中间相炭微球增强6092Al,研究了SiCp和Gr对(Gr+SiCp)/Al复合材料摩擦磨损性能的影响. 通过制备3种不同成分的(Gr+SiCp)/6092Al复合材料,进行摩擦磨损试验,利用Taguchi和方差分析确定最小摩擦系数和磨损率,并讨论相应的摩擦磨损机制.

    原材料选用6092Al粉末,其名义成分列于表1中. 增强相为SiCp和球形石墨颗粒(Gr),形貌如图1所示. 其中SiCp名义尺寸为7 μm,Gr颗粒尺寸为15~20 μm. 所制备的复合材料成分与编号列于表2中.

    表  1  AA6092合金名义成分(质量分数)
    Table  1.  Nominal composition of 6092Al alloy (weight fraction)
    Materialw(Mg)/%w(Cu)/%w(Si)/%w(Al)/%
    6092Al1.21.00.6Bal.
    下载: 导出CSV 
    | 显示表格
    图  1  原始粉末形貌
    Figure  1.  Morphology of raw powders
    表  2  复合材料样品标号与其对应成分占比(体积分数)
    Table  2.  Label and component of fabricated composite samples (φ)
    Exp noSampleSiCpGr6092Al
    115%Gr/6092Al015Bal
    2(5%Gr+10%SiCp)/6092Al105Bal
    3(20%SiCp+5%Gr)/6092Al205Bal
    下载: 导出CSV 
    | 显示表格

    采用机械混料机将不同成分的粉末混合,球料比为1:1,混合6 h. 将不同成分混合均匀的粉末装入钢制模具中冷压致密,之后将模具装入真空热压炉,进行热压烧结. 真空热压温度为600 ℃,热压压力大于30 MPa. 热压结束后,坯锭随炉冷却至室温. 将所得坯锭进行热挤压处理,挤压温度为420 ℃,挤压比为16:1. 热挤压后的复合材料进行T6热处理,提高材料的性能. 具体处理方法如下:将挤压态的铝棒去除氧化皮,在540 ℃下保温2 h固溶,然后水淬,最后在170 ℃下进行6 h的人工时效.

    采用TESTOR 2000布氏硬度计对复合材料样品进行硬度测试,样品利用砂纸逐级磨至1500#后进行机械抛光. 切取直径为4.8 mm,高20 mm圆柱试样用于摩擦磨损试验. 滑动摩擦磨损试验在MMW-1A型立式万能摩擦磨损试验机进行,室温下无润滑剂. 图2所示为摩擦磨损试验装置示意图,表3为对摩副各成分含量. 表4列出了摩擦磨损试验影响因素及水平设计,通过改变施加的载荷(10、15和20 N)以及滑动速率(0.5、0.75和1 m/s)进行测试,并将滑动距离固定为600 m. 对摩副为镍铝青铜制成的外径31 mm、内径16 mm、厚度8 mm的环状摩擦副,硬度为HRB85.6. 试验前,复合材料样品与对摩副均使用1500#砂纸打磨表面,获得一定的光洁度. 试验前后均采用乙醇为溶剂于超声波清洗机中净化处理,样品干燥后用精度为0.1 mg的分析天平称重. 采用Quanta 600扫描电镜观察材料磨损后表面形貌.

    图  2  摩擦磨损试验装置示意图
    Figure  2.  Schematic diagram of the friction and wear experimental device
    表  3  铜合金对摩副名义成分(质量分数)
    Table  3.  Nominal composition of copper grinding pair (weight fraction)
    Materialw(C)/%w(Al)/%w(Mn)/%w(Fe)/%w(Ni)/%w(Cu)/%Total
    Copper grinding pair2.8410.211.024.245.5276.17100
    下载: 导出CSV 
    | 显示表格
    表  4  摩擦磨损试验影响因素及水平设计
    Table  4.  Designed factors and levels of friction and wear testing
    LevelLoad,L/NSliding speed,S/(m/s)Reinforcement,R/%
    1100.50
    2150.7510
    3201.020
    下载: 导出CSV 
    | 显示表格

    图3为复合材料垂直于挤压方向的金相组织. 可以看出,3种材料中,增强相颗粒分布均匀,Gr呈近球形,SiCp无团聚现象,无明显孔洞缺陷. 图4所示为3种复合材料硬度的变化,随着SiC含量增加,材料的硬度明显增加. 这是由于SiC颗粒的硬度明显高于基体合金,因此SiC含量增加,复合材料的硬度增加. 另外,SiC颗粒的加入会导致基体晶格畸变加剧,进一步提高材料的硬度.

    图  3  复合材料的光学组织
    Figure  3.  Optical microstructure of fabricated composites
    图  4  所制备的3种复合材料的布氏硬度
    Figure  4.  HBW hardness of the three fabricated composite samples

    通过摩擦磨损试验,对不同成分复合材料在不同磨损条件下的磨损性能进行表征,并对磨损机理进行解释. 此外,对各个工艺参数的影响程度进行研究,找出影响磨损过程的重要因素和组合因素,以找到最小磨损率和摩擦系数. 通过方差分析(Analysis of Variance,ANOVA)确定影响摩擦磨损的参数和参数组合,通过田口法(Taguchi)分析S/N比,以确定影响摩擦磨损的重要因素[26]. 采用3个参数进行干滑动磨损试验,即载荷、滑动速率和增强相体积百分比. 由于正交阵列的自由度应大于或等于这些磨损参数之和,故选择具有27行和13列的L27(313)正交表. 模型的响应是磨损率和摩擦系数. 在试验中产生所有数据点的信噪比(S/N),S/N特性可以分为3类,即“望目”、“望大”和“望小”(望大:值越大越好;望目:值与目标值越接近越好;望小:值越小越好). 在这项研究中,我们希望摩擦系数和磨损率越小越好,故选择“望小”来分析干滑动磨损性能. 式(1)为使用“望小”的磨损率和摩擦系数的S/N的公式.

    $$ {\rm{S}}/{\rm{N}} = - 10{\rm{log}}10\left( {sum\left( {{y^2}} \right)/n} \right) $$ (1)

    其中:y为摩擦磨损的响应,n是观察数量.

    按照正交阵列进行试验,并获得各种参数组合的结果,然后使用专门用于DOE应用(试验设计,Design of experimental,DOE)的商业软件MINITAB 17分析测量结果. 表5显示了磨损率和摩擦系数的试验结果,并使用信噪比响应表分析了载荷、滑动速率和SiCp体积百分比对磨损率和摩擦系数的影响. 通过对响应变化的分析,可以快速识别有助于降低摩擦系数和减少磨损率的控制因素.

    表  5  摩擦磨损试验正交阵列和信噪比响应结果
    Table  5.  Results of friction and wear experiments orthogonal array and signal-to-noise ratio response
    Exp noLoad /NSpeed /(m/s)Reinforcement /%Friction coefficient S/N ratio /dbWear rate/ (mm3/m)S/N ratio/db
    1100.500.222 4413.055 740.001 50656.445 6
    2100.5100.403 467.883 990.000 49466.122 1
    3100.5200.402 087.913 7510.001 03659.693 2
    4100.7500.174 0715.185 520.001 4456.831 7
    5100.75100.363 548.788 9560.000 37168.620 8
    6100.75200.351 919.071 3680.000 24472.261 0
    710100.344 99.246 1360.042 35427.462 1
    8101100.361 948.827 2680.000 30970.204 5
    9101200.406 667.815 3710.001 64555.674 9
    10150.500.259 9511.702 20.002 35752.554 1
    11150.5100.485 686.272 9960.002 03953.813 6
    12150.5200.439 287.145 1710.004 38847.155 5
    13150.7500.226 912.883 310.001 63755.721 4
    14150.75100.407 837.790 4170.00148356.579 6
    15150.75200.355 58.983 2080.0012857.857 8
    1615100.406 737.813 8760.116 91518.642 6
    17151100.380 378.395 8750.000 6863.356 0
    18151200.432 367.283 090.005 05845.920 6
    19200.500.264 2411.560 030.010 73639.383 3
    20200.5100.489 926.197 4970.002 40952.362 6
    21200.5200.449 676.942 1220.004 50946.917 5
    22200.7500.252 3311.960 620.001 96454.137 8
    23200.75100.421 687.500 340.001 54456.225 1
    24200.75200.393 238.107 0670.001 58456.002 7
    2520100.441 947.092 7340.168 89215.447 8
    26201100.383 838.317 2220.000 6863.356 0
    27201200.456 56.811 1840.005 48445.217 3
    下载: 导出CSV 
    | 显示表格

    在Taguchi中,S/N是稳健性的度量,用于通过使无法控制的因子(噪声因子)的效应最小化来确认减小产品或过程中的变异性的控制因子. 对于磨损率和摩擦系数在不同参数水平下获得的信噪比的等级分别在表6~7中给出. 可以观察到SiCp体积百分比是影响磨损率和摩擦系数的主要参数,其后是滑动速率和载荷.

    表  6  磨损率信噪比响应表-望小
    Table  6.  SNR response for wear rate - hope small
    LevelL/NS/(m/s)R/%
    159.2652.7241.85
    250.1859.3661.18
    347.6745.0354.08
    Delta11.5914.3319.33
    Rank321
    下载: 导出CSV 
    | 显示表格
    表  7  摩擦系数信噪比响应表-望小
    Table  7.  SNR response for Co-eff of friction-hope small
    LevelL/NS/(m/s)R/%
    19.7548.74211.167
    28.69710.0307.775
    38.2777.9567.786
    Delta1.4782.0743.392
    Rank321
    下载: 导出CSV 
    | 显示表格

    使用S/N对这些试验结果进行分析,得出了磨损率和摩擦系数最小的条件. 如图5~6所示,磨损率最小的最佳条件是L=10 N,S=0.75 m/s和R=10%;摩擦系数的最佳条件是L=10 N,S=0.75 m/s和R=0%. 因此,可以通过控制因子的最佳设置,让复合材料获得更好的耐磨性.

    图  5  磨损率信噪比主效应图(数据均值,望小)
    Figure  5.  Main effect diagram of wear rate SNR (data mean,small)
    图  6  摩擦系数信噪比主效应图(数据均值,望小)
    Figure  6.  Main effect diagram of friction coefficient SNR (data mean,small)

    使用ANOVA分析试验结果,该方法用于研究磨损参数,即载荷、滑动速率和SiCp体积百分比对摩擦磨损性能的影响. 通过ANOVA,可以确定哪个独立因子优于另一个独立因子以及该自变量的百分比贡献. 表8~9显示了在3个水平和这些因素相互作用下的磨损率和摩擦系数的ANOVA结果,该分析的显着性水平为±0.05,即置信水平为95%,最后1列为每个参数对总变化的百分比贡献(p),表明它们对结果的影响程度.

    表  8  磨损率方差分析
    Table  8.  Analysis of variance of wear rate
    SourceDFSeq SSAdj SSAdj MsFPΡ/%
    L/N20.001 250.001 2350.000 6171.470.2853.18
    S/(m/s)20.007 6750.007 6750.003 8379.170.00919.78
    R/%20.008 0880.008 0880.004 0449.660.00720.84
    L*S40.001 6900.001 6900.000 4221.010.4574.35
    L*R40.001 8910.001 8910.000 4731.130.4084.87
    S*R40.014 8780.014 8780.003 7198.890.00538.34
    Error80.003 3480.003 3480.000 4198.63
    Total260.038 805100
    Notes:DF - degrees of freedom;Seq ss - sequential sum of squares;Adj SS - adjusted sum of squares;Adj Ms - adjusted mean of squares;F-Fishers test;P - probability statistic
    下载: 导出CSV 
    | 显示表格
    表  9  摩擦系数方差分析
    Table  9.  Analysis of variance of friction coefficient
    SourceDFSeq SSAdj SSAdj MsFPΡ/%
    L/N20.015 9350.015 9350.007 96730.220.0008.65
    S/(m/s)20.026 1700.026 1700.013 08549.630.00014.20
    R/%20.089 5090.089 5090.0447 55169.740.00048.57
    L*S40.000 4230.000 4230.000 1060.400.8030.23
    L*R40.001 0190.001 0190.000 2550.970.4760.55
    S*R40.049 1240.049 1240.012 28146.580.00026.66
    Error80.002 1090.002 1090.000 2641.14
    Total260.184 290100
    下载: 导出CSV 
    | 显示表格

    表8所示,对磨损量影响最大的是滑动速率和增强相体积分数的相互作用(38.34%),然后是增强相含量(20.84%),滑动速率(19.87%)单独作用,其余影响因素总共只占12.4%. 从表9摩擦系数方差分析,可以观察到SiCp体积百分比贡献率最高约为48.57%,其次是SiCp体积百分比和滑动速率相互作用(26.66%)、滑动速率(14.20%)和载荷(8.65%). 然而,载荷和速度的相互作用是0.23%,载荷和SiCp体积百分比的相互作用是0.55%,对摩擦系数的影响非常小,可忽略不计. 根据ANOVA和S/N,可以推断出SiCp体积百分比单独作用、SiCp体积百分比和滑动速率相互作用以及滑动速率单独作用对磨损率和摩擦系数产生了最主要的影响,这也确定了接下来的试验主要控制和研究的因素.

    根据前文Taguchi所确立的最小摩擦系数条件,即L=10 N,S=0.75 m/s,R=0,以及信噪比主效应图中所得最大摩擦系数条件L=20 N,S=1 m/s,R=10%. 对这两个条件下的磨损形貌进行分析,如图7所示,在图7(a)中出现连续且互相平行的犁痕,表明磨损过程较为温和,以轻度磨损为主;由于Gr具有六方晶体结构,沿薄层方向上剪切强度很低,当其被加入到复合材料之后,在磨损过程中脱落,并被挤压和涂抹在磨损表面形成润滑薄膜,避免了磨损表面与对摩副的直接接触,故摩擦系数显著降低. 图7(b)中出现断续的犁痕和严重的分层现象,为严重磨损. 这是因为基体中SiCp体积分数增加,材料硬度增加而塑性变差,导致产生较小的碎屑[27]. 同时,磨损表面在滑动方向上显露出细小的凹槽. 凹槽主要因为SiCp承载并与润滑Gr膜相互结合而形成. 因此,在低负载下,磨损表面上的损坏区域减小. 随着负载增加,形成更粗糙和更深的凹槽,甚至出现分层现状,导致产生更多的磨屑.

    图  7  具有最小摩擦系数的复合材料的磨损形貌SEM观察
    Figure  7.  Wear morphology of composites with minimum friction coefficient:

    根据前文Taguchi的分析,磨损率和摩擦系数所确立的最小(大)磨损条件并不相同,磨损率最小的磨损条件为L=10 N,S=0.75 m/s,R=10%;磨损率最大的磨损条件为L=20 N,S=1 m/s,R=20%. 其磨损形貌如图8所示,当载荷较低,滑动速率较小时,形成的犁痕较细小且连续性好,当载荷和滑动速率均增大时,发现了严重的分层现象,且分层跨度较大,这导致材料更多的脱落,降低材料的耐磨性.

    图  8  具有最大摩擦系数的复合材料的磨损形貌的SEM照片
    Figure  8.  SEM micrography of wear morphology of composites with maximum friction coefficient

    以往的文献[28-30]表明,添加Gr主要对Gr单相增强的复合材料改善较明显,对于混杂增强的复合材料的摩擦系数和磨损率影响并不大;另一方面,Gr的大小对复合材料的磨损性能也基本没有影响,因此Gr的加入主要起到自润滑的作用,以改善复合材料磨损端面和对摩副在不同条件下的磨损环境. 如图9所示,为添加球形石墨的单相增强复合材料与混杂增强复合材料摩擦系数随载荷和滑动速率变化时,所获得的面积图,根据所得面积高度的大小,可以判定摩擦系数的稳定性,高度越高则稳定性越差. 可以发现3种复合材料中,15%Gr/6092Al获得了最小摩擦系数,但就摩擦系数稳定性而言,15%Gr/6092Al摩擦系数稳定性最差,且随着SiCp体积百分比的增加,摩擦系数稳定性提升,也就是说当使用(5%Gr+20%SiCp)/6092Al时,相较于其他两种复合材料,可满足更多的使用条件,具有更大的使用潜力. 有文献[31]也表明硬质陶瓷颗粒体积分数为15%~20%时,会对复合材料的干滑动行为产生积极影响. 当SiCp含量升高时,在磨损过程中,单位面积参与磨损的SiCp增多,同时承受了更多载荷,且由于SiCp良好的尺寸稳定性,减少了摩擦系数的波动. 同时,Gr的加入会降低复合材料的力学性能,而SiCp的增加可以弥补Gr对复合材料力学性能的弱化[32].

    图  9  不同载荷下复合材料的摩擦系数面积图
    Figure  9.  Area of friction coefficient of composites under various loads

    为了确定(5%Gr+20%SiCp)/6092Al摩擦系数稳定性优于(5%Gr+10%SiCp)/6092Al的原因,对磨损条件最恶劣(即L=20 N,S=1 m/s)且未经酒精清洗的磨损表面形貌的SEM照片进行观察与分析,如图10所示. 可以发现,图10(a)中磨痕更多、更深,分层剥落的痕迹明显,同时观察到片状磨屑残留在磨损表面,磨损机制以剥层磨损为主;而图10(b)中的磨痕较浅,分层情况不明显,磨屑多为细小的颗粒状并掺杂少量片状磨屑,磨损机制以磨粒磨损为主. 这是由于较高的SiCp含量增加了材料的硬度,提高了滑动中抵抗塑性变形的能力,此外更多SiCp在磨损表面凸起对基体起到支撑保护作用,有助于材料在磨损过程中形成稳定的摩擦层,从而减轻了层状磨屑的剥落现象,磨损面也更为平滑,因此SiCp含量高时摩擦系数更为稳定.

    图  10  复合材料的磨损面形貌的SEM照片
    Figure  10.  SEM observation of wear morphology of composites

    利用粉末冶金法与热挤压法成功制备出SiCp与球形石墨混杂增强的(Gr+SiCp)/6092Al复合材料. 研究了载荷、磨损速率和增强相百分比对(Gr+SiCp)/6092Al摩擦系数和磨损率的影响规律. 采用Taguchi试验,利用田口模型的DOE方法,对影响摩擦磨损的因素进行分析.结论如下:

    a. 复合材料中Gr和SiCp在铝基体中分散均匀,材料致密无孔洞. 随SiCp体积分数增加和Gr体积分数降低,材料硬度提高.

    b. 基于不同水平的信噪比响应表对控制因子进行排序,确定了磨损率最小的最佳条件是L=10 N,S=0.75 m/s和R=10%;摩擦系数的最佳条件是L=10 N,S=0.75 m/s和R=0%. 因此,可以通过控制因子的最佳设置获得更好的耐磨性.

    c. 基于方差分析得出,SiCp百分比单独作用、SiCp百分比和滑动速率相互作用以及滑动速率单独作用对磨损率和摩擦系数产生了最主要的影响,其他因素单独作用及相互作用影响较小.

    d. 15%Gr/6092Al在载荷为10 N,滑动速率为0.75 m/s时获得了最小摩擦系数0.174,但载荷为20 N,滑动速率为1 m/s时,摩擦系数增加了1.5倍. 对于混杂增强的复合材料,当SiCp含量升高时减少了摩擦系数的波动.

    e. 磨损过程中产生的分层现象是复合材料摩擦系数与磨损率增大的主要原因. 当所形成的磨损表面磨痕更加连续且分层更少时,摩擦系数较小、磨损率低.

  • 图  1   原始粉末形貌

    Figure  1.   Morphology of raw powders

    图  2   摩擦磨损试验装置示意图

    Figure  2.   Schematic diagram of the friction and wear experimental device

    图  3   复合材料的光学组织

    Figure  3.   Optical microstructure of fabricated composites

    图  4   所制备的3种复合材料的布氏硬度

    Figure  4.   HBW hardness of the three fabricated composite samples

    图  5   磨损率信噪比主效应图(数据均值,望小)

    Figure  5.   Main effect diagram of wear rate SNR (data mean,small)

    图  6   摩擦系数信噪比主效应图(数据均值,望小)

    Figure  6.   Main effect diagram of friction coefficient SNR (data mean,small)

    图  7   具有最小摩擦系数的复合材料的磨损形貌SEM观察

    Figure  7.   Wear morphology of composites with minimum friction coefficient:

    图  8   具有最大摩擦系数的复合材料的磨损形貌的SEM照片

    Figure  8.   SEM micrography of wear morphology of composites with maximum friction coefficient

    图  9   不同载荷下复合材料的摩擦系数面积图

    Figure  9.   Area of friction coefficient of composites under various loads

    图  10   复合材料的磨损面形貌的SEM照片

    Figure  10.   SEM observation of wear morphology of composites

    表  1   AA6092合金名义成分(质量分数)

    Table  1   Nominal composition of 6092Al alloy (weight fraction)

    Materialw(Mg)/%w(Cu)/%w(Si)/%w(Al)/%
    6092Al1.21.00.6Bal.
    下载: 导出CSV

    表  2   复合材料样品标号与其对应成分占比(体积分数)

    Table  2   Label and component of fabricated composite samples (φ)

    Exp noSampleSiCpGr6092Al
    115%Gr/6092Al015Bal
    2(5%Gr+10%SiCp)/6092Al105Bal
    3(20%SiCp+5%Gr)/6092Al205Bal
    下载: 导出CSV

    表  3   铜合金对摩副名义成分(质量分数)

    Table  3   Nominal composition of copper grinding pair (weight fraction)

    Materialw(C)/%w(Al)/%w(Mn)/%w(Fe)/%w(Ni)/%w(Cu)/%Total
    Copper grinding pair2.8410.211.024.245.5276.17100
    下载: 导出CSV

    表  4   摩擦磨损试验影响因素及水平设计

    Table  4   Designed factors and levels of friction and wear testing

    LevelLoad,L/NSliding speed,S/(m/s)Reinforcement,R/%
    1100.50
    2150.7510
    3201.020
    下载: 导出CSV

    表  5   摩擦磨损试验正交阵列和信噪比响应结果

    Table  5   Results of friction and wear experiments orthogonal array and signal-to-noise ratio response

    Exp noLoad /NSpeed /(m/s)Reinforcement /%Friction coefficient S/N ratio /dbWear rate/ (mm3/m)S/N ratio/db
    1100.500.222 4413.055 740.001 50656.445 6
    2100.5100.403 467.883 990.000 49466.122 1
    3100.5200.402 087.913 7510.001 03659.693 2
    4100.7500.174 0715.185 520.001 4456.831 7
    5100.75100.363 548.788 9560.000 37168.620 8
    6100.75200.351 919.071 3680.000 24472.261 0
    710100.344 99.246 1360.042 35427.462 1
    8101100.361 948.827 2680.000 30970.204 5
    9101200.406 667.815 3710.001 64555.674 9
    10150.500.259 9511.702 20.002 35752.554 1
    11150.5100.485 686.272 9960.002 03953.813 6
    12150.5200.439 287.145 1710.004 38847.155 5
    13150.7500.226 912.883 310.001 63755.721 4
    14150.75100.407 837.790 4170.00148356.579 6
    15150.75200.355 58.983 2080.0012857.857 8
    1615100.406 737.813 8760.116 91518.642 6
    17151100.380 378.395 8750.000 6863.356 0
    18151200.432 367.283 090.005 05845.920 6
    19200.500.264 2411.560 030.010 73639.383 3
    20200.5100.489 926.197 4970.002 40952.362 6
    21200.5200.449 676.942 1220.004 50946.917 5
    22200.7500.252 3311.960 620.001 96454.137 8
    23200.75100.421 687.500 340.001 54456.225 1
    24200.75200.393 238.107 0670.001 58456.002 7
    2520100.441 947.092 7340.168 89215.447 8
    26201100.383 838.317 2220.000 6863.356 0
    27201200.456 56.811 1840.005 48445.217 3
    下载: 导出CSV

    表  6   磨损率信噪比响应表-望小

    Table  6   SNR response for wear rate - hope small

    LevelL/NS/(m/s)R/%
    159.2652.7241.85
    250.1859.3661.18
    347.6745.0354.08
    Delta11.5914.3319.33
    Rank321
    下载: 导出CSV

    表  7   摩擦系数信噪比响应表-望小

    Table  7   SNR response for Co-eff of friction-hope small

    LevelL/NS/(m/s)R/%
    19.7548.74211.167
    28.69710.0307.775
    38.2777.9567.786
    Delta1.4782.0743.392
    Rank321
    下载: 导出CSV

    表  8   磨损率方差分析

    Table  8   Analysis of variance of wear rate

    SourceDFSeq SSAdj SSAdj MsFPΡ/%
    L/N20.001 250.001 2350.000 6171.470.2853.18
    S/(m/s)20.007 6750.007 6750.003 8379.170.00919.78
    R/%20.008 0880.008 0880.004 0449.660.00720.84
    L*S40.001 6900.001 6900.000 4221.010.4574.35
    L*R40.001 8910.001 8910.000 4731.130.4084.87
    S*R40.014 8780.014 8780.003 7198.890.00538.34
    Error80.003 3480.003 3480.000 4198.63
    Total260.038 805100
    Notes:DF - degrees of freedom;Seq ss - sequential sum of squares;Adj SS - adjusted sum of squares;Adj Ms - adjusted mean of squares;F-Fishers test;P - probability statistic
    下载: 导出CSV

    表  9   摩擦系数方差分析

    Table  9   Analysis of variance of friction coefficient

    SourceDFSeq SSAdj SSAdj MsFPΡ/%
    L/N20.015 9350.015 9350.007 96730.220.0008.65
    S/(m/s)20.026 1700.026 1700.013 08549.630.00014.20
    R/%20.089 5090.089 5090.0447 55169.740.00048.57
    L*S40.000 4230.000 4230.000 1060.400.8030.23
    L*R40.001 0190.001 0190.000 2550.970.4760.55
    S*R40.049 1240.049 1240.012 28146.580.00026.66
    Error80.002 1090.002 1090.000 2641.14
    Total260.184 290100
    下载: 导出CSV
  • [1] 高红霞, 陈宝龙, 樊江磊, 等. SiC颗粒增强耐磨铝基复合材料组织及性能研究[J]. 热加工工艺, 2018, 47(8): 93–96

    Gao Hongxia, Chen Baolong, Fan Jianglei, et al. Study on mcrostructure and properties of SiC particle-reinforced wear resistant aluminum matrix composites[J]. Hot Working Technology, 2018, 47(8): 93–96

    [2] 李书志, 王铁军, 王玲. SiC颗粒增强铝基复合材料的研究进展[J]. 粉末冶金工业, 2017, 27(1): 64–70

    Li Shuzhi, Wang Tiejun, Wang Ling. Research progress of SiC particle reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2017, 27(1): 64–70

    [3] 卢棋, 何国球, 杨洋, 等. SiC颗粒增强铝基复合材料的摩擦磨损性能研究[J]. 金属功能材料, 2015, 22(2): 41–47

    Lu Qi, He Guoqiu, Yang Yang, et al. Research progress of friction and wear behavior of silicon carbide particle reinforced aluminum matrix composite[J]. Metallic Functional Materials, 2015, 22(2): 41–47

    [4] 李敏, 王爱琴, 谢敬佩, 等. SiC颗粒增强Al基复合材料的研究现状与进展[J]. 粉末冶金工业, 2015, 25(3): 55–60

    Li Min, Wang Aiqin, Xie Jingpei, et al. The present research situation and progress of SiC particle reinforced aluminum matrix composites[J]. Powder Metallurgy Industry, 2015, 25(3): 55–60

    [5]

    Singh J, Chauhan A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables[J]. Ceramics International, 2016, 42(1): 56–81. doi: 10.1016/j.ceramint.2015.08.150

    [6]

    Manivannan I, Ranganathan S, Gopalakannan S, et al. Mechanical properties and tribological behavior of Al6061-SiC-Gr self-Lubricating hybrid Nanocomposites[J]. Transactions of the Indian Institute of Metals, 2018, 71(8): 1897–1911. doi: 10.1007/s12666-018-1321-0

    [7]

    Rouhi M, Moazami G M, Ardestani M. Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1169–1183. doi: 10.1016/S1003-6326(19)65025-9

    [8]

    Wang Y Q, Song J I. Dry sliding wear behavior of Al2O3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeeze casting method[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(7): 1441–1448. doi: 10.1016/S1003-6326(11)60879-0

    [9]

    Çelik Y H, Kilickap E. Hardness and wear behaviours of Al matrix composites and hybrid composites reinforced with B4C and SiC[J]. Powder Metallurgy and Metal Ceramics, 2019, 57(9-10): 613–622. doi: 10.1007/s11106-019-00023-w

    [10] 杜军, 刘耀辉, 于思荣, 等. Al2O3纤维及炭纤维增强ZL109混杂复合材料的高温摩擦磨损性能研究[J]. 摩擦学学报, 2003, 23(3): 206–210 doi: 10.3321/j.issn:1004-0595.2003.03.009

    Du Jun, Liu Yaohui, Yu Sirong, et al. The friction and wear properties of Al-12Si hybrid composites reinforced with alumina and carbon short fibers at elevated temperature[J]. Tribology, 2003, 23(3): 206–210 doi: 10.3321/j.issn:1004-0595.2003.03.009

    [11] 颜建辉, 康蓉, 黄金鑫, 等. MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的摩擦磨损性能[J]. 摩擦学学报, 2019, 39(3): 366–373

    Yan Jianhui, Kang Rong, Huang Jinxin, et al. Friction and wear properties of MoSi2-Mo5Si3-Mo5SiB2 composite against SiC[J]. Tribology, 2019, 39(3): 366–373

    [12] 杜俊涛, 聂毅, 吕家贺, 等. 中间相炭微球在锂离子电池负极材料的应用进展[J]. 洁净煤技术, 2020, 26(1): 129–138

    Du Juntao, Nie Yi, Lu Jiahe, et al. Application progress on mesocarbon microbeads as anode materials for lithium ion batteries[J]. Clean Coal Technology, 2020, 26(1): 129–138

    [13] 谢奥林, 尹彩流, 王秀飞, 等. 中间相炭微球-铜基粉末冶金摩擦材料的摩擦学行为[J]. 广西大学学报(自然科学版), 2018, 43(6): 2470–2477

    Xie Aolin, Yin Cailiu, Wang Xiufei, et al. Tribology behavior of mesocarbon microbeads-copper based powder metallurgy friction material[J]. Journal of Guangxi University(Nat Sci Ed), 2018, 43(6): 2470–2477

    [14] 张有茶, 贾成厂, 贾鹏. 中间相碳微球/氰酸酯树脂复合材料的导电导热性能[J]. 复合材料学报, 2019, 36(3): 602–610

    Zhang Youcha, Jia Chengchang, Jia Peng. Electrically and thermally conductive performance of mesocarbon microbeads/cyanate ester resin composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 602–610

    [15] 卢德宏, 金燕萍, 吴桢干, 等. Gr和SiC混杂增强铝基复合材料与铸铁的摩擦磨损性能对比[J]. 机械工程材料, 2000, (4): 32–35 doi: 10.3969/j.issn.1000-3738.2000.04.011

    Lu Dehong, Jin Yanping, Wu Zhengan, et al. Comparison of wear performance of silicon carbide and graphite particulates reinforced aluminum materix composite with gray cast iron[J]. Materials for Mechanical Engineering, 2000, (4): 32–35 doi: 10.3969/j.issn.1000-3738.2000.04.011

    [16] 尧建刚, 李文芳, 杜军. 石墨颗粒含量对(Grp+Al2O3-SiO2f)/ZL109混杂复合材料摩擦磨损性能的影响[J]. 材料科学与工程学报, 2005(5): 491–495 doi: 10.3969/j.issn.1673-2812.2005.05.005

    Yao Jiangang, Li Wenfang, Du Jun. Effect of graphite content on friction and wear properties of aluminosilicate short fiber and graphite particle reinforced Al-12Si hybrid composites[J]. Journal of Materials Science &Engineering, 2005(5): 491–495 doi: 10.3969/j.issn.1673-2812.2005.05.005

    [17] 朱洪睿, 张绪平, 杨永建, 等. 石墨铝基自润滑材料的制备及性能表征[J]. 润滑与密封, 2012, 37(1): 73–77 doi: 10.3969/j.issn.0254-0150.2012.01.017

    Zhu Hongrui, Zhang Xuping, Yang Yongjian, et al. Processing, properties and application of aluminium-graphite particle composites[J]. Lubrication Engineering, 2012, 37(1): 73–77 doi: 10.3969/j.issn.0254-0150.2012.01.017

    [18]

    Singh N, Mir I U H, Raina A, et al. Synthesis and tribological investigation of Al-SiC based nano hybrid composite[J]. Alexandria Engineering Journal, 2018, 57(3): 1323–1330. doi: 10.1016/j.aej.2017.05.008

    [19]

    Rajaram G, Kumaran S, Srinivasa Rao T, et al. Studies on high temperature wear and its mechanism of Al-Si/graphite composite under dry sliding conditions[J]. Tribology International, 2010, 43(11): 2152–2158. doi: 10.1016/j.triboint.2010.06.004

    [20]

    Stojanović B, Vencl A, Bobić I, et al. Experimental optimisation of the tribological behaviour of Al/SiC/Gr hybrid composites based on Taguchi’s method and artificial neural network[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(6): 311–324. doi: 10.1007/s40430-018-1237-y

    [21]

    Idrisi A H, Mourad A-H I. Wear performance analysis of aluminum matrix composites and optimization of process parameters using statistical techniques[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5395–5409. doi: 10.1007/s11661-019-05446-z

    [22]

    Madhukar P, Selvaraj N, Rao C S P, et al. Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using taguchi technique[J]. Composites Part B: Engineering, 2019, 175: 107–136.

    [23]

    Ritapure P P, Kharde Y R. SiC contents and pin temperature effect on tribological properties of Al25Zn/SiC composites[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 234–244. doi: 10.1016/j.ijrmhm.2019.04.013

    [24] 邹小春, 张军, 孙传喜, 等. 机车车轮踏面与钢轨接触的仿真计算及试验研究[J]. 摩擦学学报, 2020, 40(1): 128–134

    Zou Xiaochun, Zhang Jun, Sun Chuanxi, et al. Simulation calculation and experimental research on contact between locomotive wheel tread and rail[J]. Tribology, 2020, 40(1): 128–134

    [25] 杜明超, 李增亮, 董祥伟, 等. 菱形颗粒冲蚀磨损特性试验及仿真研究[J]. 摩擦学学报, 2018, 38(5): 501–511

    Du Mingchao, Li Zengliang, Dong Xiangwei, et al. Experimental and numerical study on erosion characteristics of rhomboid particles[J]. Tribology, 2018, 38(5): 501–511

    [26]

    Radhika N, Subramaniam R. Wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites using taguchi's techniques[J]. Industrial Lubrication and Tribology, 2013, 65(3): 166–174. doi: 10.1108/00368791311311169

    [27] 马国楠, 王东, 刘振宇, 等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319–1328 doi: 10.11900/0412.1961.2018.00523

    Ma Guonan, Wang dong, Liu Zhenyu, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites[J]. Acta Metallurgica Sinica, 2019, 55(10): 1319–1328 doi: 10.11900/0412.1961.2018.00523

    [28]

    Jinfeng L, Longtao J, Gaohui W, et al. Effect of graphite particle reinforcement on dry sliding wear of SiC/Gr/Al composites[J]. Rare Metal Materials and Engineering, 2009, 38(11): 1894–1898. doi: 10.1016/S1875-5372(10)60059-8

    [29]

    Vencl A, Bobic I, Stojanovic B. Tribological properties of A356 Al-Si alloy composites under dry sliding conditions[J]. Industrial Lubrication and Tribology, 2014, 66(1): 66–74. doi: 10.1108/ILT-06-2011-0047

    [30]

    Guo M L T, Tsao C Y A. Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method[J]. Composites Science and Technology, 2000, 60(1): 65–74. doi: 10.1016/S0266-3538(99)00106-2

    [31]

    Wang Y Q, Afsar A M, Jang J H, et al. Room temperature dry and lubricant wear behaviors of Al2O3f/SiCp/Al hybrid metal matrix composites[J]. Wear, 2010, 268(7-8): 863–870. doi: 10.1016/j.wear.2009.11.010

    [32]

    Mahdavi S, Akhlaghi F. Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites[J]. Journal of Materials Science, 2010, 46(5): 1502–1511.

  • 期刊类型引用(5)

    1. 高希瑞,李恒青,韦江,郑宝超,刘洋赈. 烧结温度对车用石墨-TiB_2增强铜基复合材料组织与性能的影响. 材料热处理学报. 2024(05): 32-39 . 百度学术
    2. 刘园,陈寒韵,崔岩,李纯. SiC/Gr/Al复合材料残余应力的有限元模拟. 热加工工艺. 2023(22): 95-98+103 . 百度学术
    3. 金延文,李泽琛,孙海霞,宋保永,王君,王东,马宗义. 不同碳化硅和球形石墨含量对混杂增强铝基复合材料力学性能的影响. 精密成形工程. 2022(01): 101-108 . 百度学术
    4. 杨健,王屹,王智勇,熊耀臣,吴海红. 单点系泊系统用中压电滑环滑动电接触材料的研究进展. 材料开发与应用. 2022(01): 77-83+91 . 百度学术
    5. 周璇,高义民,路向前,赵四勇. 双相多尺度镀镍碳纤维和碳化锆颗粒增强铝基复合材料制备及力学性能研究. 铸造技术. 2022(06): 417-422 . 百度学术

    其他类型引用(8)

图(10)  /  表(9)
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  537
  • PDF下载量:  119
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-12-15
  • 录用日期:  2020-12-15
  • 网络出版日期:  2021-05-05
  • 发布日期:  2021-05-27

目录

/

返回文章
返回