ISSN   1004-0595

CN  62-1224/O4

高级检索

阻旋栅对梳齿密封动静特性影响研究

吴可欣, 张万福, 曹浩, 陈璐琪, 尹露, 李春

吴可欣, 张万福, 曹浩, 陈璐琪, 尹露, 李春. 阻旋栅对梳齿密封动静特性影响研究[J]. 摩擦学学报, 2020, 40(5): 647-655. DOI: 10.16078/j.tribology.2019249
引用本文: 吴可欣, 张万福, 曹浩, 陈璐琪, 尹露, 李春. 阻旋栅对梳齿密封动静特性影响研究[J]. 摩擦学学报, 2020, 40(5): 647-655. DOI: 10.16078/j.tribology.2019249
WU Kexin, ZHANG Wanfu, CAO Hao, CHEN Luqi, YIN Lu, LI Chun. Effects of Swirl Brakes on Static and Rotordynamic Performance of Labyrinth Seals[J]. TRIBOLOGY, 2020, 40(5): 647-655. DOI: 10.16078/j.tribology.2019249
Citation: WU Kexin, ZHANG Wanfu, CAO Hao, CHEN Luqi, YIN Lu, LI Chun. Effects of Swirl Brakes on Static and Rotordynamic Performance of Labyrinth Seals[J]. TRIBOLOGY, 2020, 40(5): 647-655. DOI: 10.16078/j.tribology.2019249
吴可欣, 张万福, 曹浩, 陈璐琪, 尹露, 李春. 阻旋栅对梳齿密封动静特性影响研究[J]. 摩擦学学报, 2020, 40(5): 647-655. CSTR: 32261.14.j.tribology.2019249
引用本文: 吴可欣, 张万福, 曹浩, 陈璐琪, 尹露, 李春. 阻旋栅对梳齿密封动静特性影响研究[J]. 摩擦学学报, 2020, 40(5): 647-655. CSTR: 32261.14.j.tribology.2019249
WU Kexin, ZHANG Wanfu, CAO Hao, CHEN Luqi, YIN Lu, LI Chun. Effects of Swirl Brakes on Static and Rotordynamic Performance of Labyrinth Seals[J]. TRIBOLOGY, 2020, 40(5): 647-655. CSTR: 32261.14.j.tribology.2019249
Citation: WU Kexin, ZHANG Wanfu, CAO Hao, CHEN Luqi, YIN Lu, LI Chun. Effects of Swirl Brakes on Static and Rotordynamic Performance of Labyrinth Seals[J]. TRIBOLOGY, 2020, 40(5): 647-655. CSTR: 32261.14.j.tribology.2019249

阻旋栅对梳齿密封动静特性影响研究

基金项目: 国家自然科学基金项目(51875361)资助
详细信息
  • 中图分类号: TK263

Effects of Swirl Brakes on Static and Rotordynamic Performance of Labyrinth Seals

Funds: The project was supported by the National Natural Science Foundation of China (51875361)
More Information
  • 摘要: 阻旋栅可改变密封进口流体周向流动与进口预旋,是提高系统稳定性的主要方法之一. 本文作者应用计算流体力学方法研究了阻旋栅几何参数对梳齿密封动静特性的影响,计算分析了阻旋栅在不同长度、间隙、周向个数及不同进口预旋比下密封流场分布与动力特性系数,并与无阻旋栅梳齿密封进行对比. 研究表明:阻旋栅能够有效抑制密封进口周向流动、降低密封腔室周向压力;随着阻旋栅周向个数与阻旋栅间隙的减小,其抑制效果增强,阻旋栅长度的增加对周向速度影响则越来越小;提高预旋比将使密封内流体周向速度增加. 与传统梳齿密封相比,具有阻旋栅的梳齿密封直接阻尼增加,交叉刚度降低,进而有效阻尼提高. 阻旋栅间隙s=0.20 mm、长度l=3.25 mm、数量n=90时密封有效阻尼较大,系统稳定性最好.
    Abstract: Swirl brakes can dramatically change the circumferential swirl flow and the preswirl at the seal inlet. The swirl brake is generally used to improve the stability of seal system. In this paper, the geometric parameters of a swirl brake were studied to evaluate its effect on the static and rotor dynamic performance for the labyrinth seal by employing computational fluid dynamics (CFD) method. Influences of length, clearance and number of the swirl brake, and inlet preswirl ratio were analyzed and compared with the conventional labyrinth seal without swirl brakes. The result showed that the swirl brake significantly reduced the circumferential velocity and pressure at the seal inlet. With the increasing number and decreasing clearance, the efficiency of swirl brakes was improved. While the effect on the circumferential velocity degraded as the swirl brake length increased. Preswirl ratio enhanced the circumferential velocity. In addition, compared with the conventional labyrinth seal, the labyrinth seal with swirl brakes showed greater direct damping, lower cross-coupled stiffness, and resultant larger effective damping. Regarding to the optimization of swirl brake geometry, the effective damping and stability of the seal system showed best performances with the clearance of 0.20 mm, length of 3.25 mm and circumferential number of 90.
  • 图  1   转子多频涡动轨迹模型示意图

    Figure  1.   Schematic model of the multiple frequency whirling orbit

    图  2   具有阻旋栅的梳齿密封模型

    Figure  2.   The labyrinth seal with swirl brakes

    图  3   具有阻旋栅的梳齿密封几何尺寸

    Figure  3.   Geometric dimensions of the labyrinth seal with swirl brakes

    图  4   具有阻旋栅的梳齿密封网格分布

    Figure  4.   Grid distribution of the labyrinth seal with swirl brakes

    图  5   周向速度取值位置

    Figure  5.   The location of the circumferential velocity distribution

    图  6   不同阻旋栅间隙下密封腔周向速度分布

    Figure  6.   Circumferential velocity distribution for various swirl brake clearances

    图  7   不同阻旋栅长度下密封腔周向速度分布

    Figure  7.   Circumferential velocity distribution for various swirl brake lengths

    图  8   不同阻旋栅个数下密封腔周向速度分布

    Figure  8.   Circumferential velocity distribution for various swirl brake numbers

    图  9   不同阻旋栅间隙下密封周向速度云图及阻旋栅间速度分布

    Figure  9.   Circumferential velocity cloud and velocity distribution for various swirl brake clearances

    图  10   不同阻旋栅长度下密封周向速度云图及阻旋栅间速度分布

    Figure  10.   Circumferential velocity cloud and velocity distribution for various swirl brake lengths

    图  11   不同阻旋栅数量下密封周向速度云图及阻旋栅间速度分布

    Figure  11.   Circumferential velocity cloud and velocity distribution for various swirl brake numbers

    图  12   不同预旋比下密封腔周向速度分布

    Figure  12.   Circumferential velocity distribution for different preswirl ratios

    图  13   不同阻旋栅结构下密封周向压力分布

    Figure  13.   Pressure distribution with different structures of swirl brakes

    图  14   不同阻旋栅间隙下直接阻尼C随涡动频率变化

    Figure  14.   Direct damping vs whirling frequency for various swirl brake clearances

    图  15   不同阻旋栅间隙下交叉刚度k随涡动频率变化

    Figure  15.   Cross-coupled stiffness vs whirling frequency for various swirl brake clearances

    图  16   不同阻旋栅间隙下有效阻尼Ceff随涡动频率变化

    Figure  16.   Effective damping vs whirling frequency for various swirl brake clearances

    图  17   不同阻旋栅长度下直接阻尼C随涡动频率变化

    Figure  17.   Direct damping vs whirling frequency for various swirl brake lengths

    图  18   不同阻旋栅长度下交叉刚度k随涡动频率变化

    Figure  18.   Cross-coupled stiffness vs whirling frequency for various swirl brake lengths

    图  19   不同阻旋栅长度下有效阻尼Ceff随涡动频率变化

    Figure  19.   Effective damping vs whirling frequency for various swirl brake lengths

    图  20   不同阻旋栅数量下直接阻尼C随涡动频率变化

    Figure  20.   Direct damping vs whirling frequency for various swirl brake numbers

    图  21   不同阻旋栅数量下交叉刚度k随涡动频率变化

    Figure  21.   Cross-coupled stiffness vs whirling frequency for various swirl brake numbers

    图  22   不同阻旋栅数量下有效阻尼Ceff随涡动频率变化

    Figure  22.   Effective damping vs whirling frequency for various swirl brake numbers

    表  1   几何参数

    Table  1   Geometric parameters

    ParameterDescriptionSpecification
    L/mmSeal length35.7
    d/mmRotor diameter60
    h/mmCavity depth3.3
    w1/mmCavity bottom width2.3
    w2/mmTooth bottom width1.5
    t/mmTooth tip width0.25
    Cr/mmSeal radial clearance0.2
    nSwirl brake number30, 60, 90
    l/mmSwirl brake length2.25, 3.25, 4.25
    s/mmSwirl brake clearance0.15, 0.20, 0.25
    r/mmSwirl brake radius0.508
    下载: 导出CSV

    表  2   计算工况参数

    Table  2   Calculation condition parameters

    ParameterSpecification
    Working fluidair(ideal gas)
    Walladiabatic smooth wall
    Turbulence modelk-ε
    Preswirl ratio, λ0.36, 0.51, 0.81
    Whirling speed, Ωi/Hz20, 40, 60, …, 260, 280
    Pressure inlet, Pin/MPa1
    Pressure outlet, Pout/MPa0.3
    Inlet temperature, T/K293
    Rotational speed, ω/(r/min)5 000
    Time step, t/s0.000 069
    下载: 导出CSV
  • [1] 荆建平, 孟光, 赵玫, 等. 超超临界汽轮机汽流激振研究现状与展望[J]. 汽轮机技术, 2004, 46(6): 405–407 doi: 10.3969/j.issn.1001-5884.2004.06.002

    Jing Jianping, Meng Guang, Zhao Mei, et al. Survey and outlook on the research of the steam excitation of superior ultra-critical steam turbine[J]. Turbine Technology, 2004, 46(6): 405–407 doi: 10.3969/j.issn.1001-5884.2004.06.002

    [2] 何立东, 夏松波. 转子密封系统流体激振及其减振技术研究简评[J]. 振动工程学报, 1999, 12(1): 64–72

    He Lidong, Xia Songbo. Review on aerodynamic excitation and its elimination method in the rotor seal system[J]. Journal of Vibration Engineering, 1999, 12(1): 64–72

    [3] 曹树谦, 陈予恕. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 69–79

    Cao Shuqian, Chen Yushu. A review of modern rotor/seal dynamics[J]. Engineering Mechanics, 2009, 26(Supplement Ⅱ): 69–79

    [4]

    Alford J S. Protecting turbomachinery from self-excited rotor whirl[J]. Journal of Engineering for Power, 1965, 87(4): 333–343. doi: 10.1115/1.3678270

    [5]

    Rosenberg C. Investigating aerodynamics transverse force in labyrinth seals in cases involving rotor eccentricity C E Tran 083[J]. Translated from Energnmashinostrojohic, 1974, 8: 15–17.

    [6] 丁学俊, 冯慧雯, 黄镇安. 汽轮机中的间隙激振[J]. 热力发电, 1995, 3: 21–29

    Ding Xuejun, Feng Huiwen, Huang Zhenan. Steam turbine clearance-excited vibration[J]. Thermal Power Generation, 1995, 3: 21–29

    [7] 郑水英, 沈庆根. 迷宫密封流体激振消振措施的研究[J]. 化工机械, 1998, 25(2): 76–81

    Zheng Shuiying, Sheng Qinggen. Studies on the excitation vibration and vibration-eliminating measures of the fluid flow in labyrinth seals[J]. Chemical Engineering & Machinery, 1998, 25(2): 76–81

    [8]

    Benckert H, Wachter J. Flow induced spring coefficients of labyrinth seals for application in rotordynamics[C]//Problems in High-Performance Turbomachinery, Texas, USA: Texas A&M University, 1980: 189-212

    [9]

    Nielsen K K, Van den Braembussche R A, Myllerup C M. Optimization of swirl brakes by means of a 3D Navier-stokes solver[C]//International Gas Turbine & Aeroengine Congress & Exposition, Stockholm, Sweden, 1998.

    [10]

    Moore J J, Hill D L. Design of swirl brakes for high pressure centrifugal compressors using CFD techniques[C]//8th International Symposium on Transport Phenomena and Rotating Machinery, Hawaii, USA, 2000.

    [11]

    Da Soghe R, Micio M, Andreini A, et al. Numerical characterization of swirl brakes for high pressure centrifugal compressors[C]// Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Texas, USA, 2013.

    [12]

    Baldassarre L, Bernocchi A, Fontana M, et al. Optimization of Swirl Brake Design and Assessment of its Stabilizing Effect on Compressor Rotordynamic Performance[C]//43rd Turbomachinery & 30th Pump Users Symposia, Texas, USA, 2014.

    [13]

    Untaroiu A, Jin H X, Fu G, et al. The effects of fluid preswirl and swirl brakes design on the performance of labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(8): 82503. doi: 10.1115/1.4038914

    [14]

    Childs D W, Mclean J E Jr, Zhang M, et al. Rotordynamic performance of a negative-swirl brake for a tooth-on-stator labyrinth seal[J]. Journal of Engineering for Gas Turbines and Power, 2015, 138(6): 062505. doi: 10.1115/gt2014-25577

    [15] 陈尧兴, 李志刚, 李军. 进口预旋对高压迷宫密封流体激振转子动力特性的影响[J]. 润滑与密封, 2017, 42(11): 1–6 doi: 10.3969/j.issn.0254-0150.2017.11.001

    Chen Yaoxing, Li Zhigang, Li Jun. Effects of inlet preswirl on the flow excitation rotordynamic characteristics of labyrinth seal[J]. Lubrication Engineering, 2017, 42(11): 1–6 doi: 10.3969/j.issn.0254-0150.2017.11.001

    [16] 郭咏雪, 何立东. 反旋流密封技术研究综述[J]. 化学工程与装备, 2018, 10: 242–245

    Guo Yongxue, He Lidong. A review of anti-swirl sealing technology[J]. Chemical Engineering & Equipment, 2018, 10: 242–245

    [17] 孙丹, 王双, 艾延廷, 等. 阻旋栅对密封静力与动力特性影响的数值分析与实验研究[J]. 航空学报, 2015, 36(9): 3002–3011

    Sun Dan, Wang Shuang, Ai Yanting, et al. Numerical and experimental research on performance of swirl brakes for static and dynamic characteristics of seals[J]. Acta aeronautica et Astronautica Sinica, 2015, 36(9): 3002–3011

    [18] 冀大伟, 李军, 宁宵. 防旋板对迷宫密封转子动力特性影响的研究[J]. 热力透平, 2017, 46(3): 164–168

    Ji Dawei, Li Jun, Ning Xiao. Investigations on the effect of inlet swirl brake structure on the rotor dynamic coefficients of labyrinth seal[J]. Thermal Turbine, 2017, 46(3): 164–168

    [19] 孙丹, 丁俊杰, 邵增德, 等. 新型转子含叶栅的迷宫密封流场特性数值研究[J]. 沈阳航空航天大学学报, 2018, 35(3): 10–16 doi: 10.3969/j.issn.2095-1248.2018.03.002

    Sun Dan, Ding Junjie, Shao Zengde, et al. Numerical study on flow field characteristics of a new labyrinth seal with cascade in rotor[J]. Journal of Shenyang Aerospace University, 2018, 35(3): 10–16 doi: 10.3969/j.issn.2095-1248.2018.03.002

    [20]

    Li Z G, Li J, Yan X. Multiple frequencies elliptical whirling orbit model and transient rans solution approach to rotordynamic coefficients of annual gas seals prediction[J]. Journal of Vibration and Acoustics, 2013, 135(3): 031005. doi: 10.1115/1.4023143

    [21]

    Li J M, De Choudhury P, Kushner F. Evaluation of centrifugal compressor stability margin and investigation of antiswirl mechanism[C]//Proceeding of the 32nd Turbomachinery Symposium, Texas, USA, 2003.

图(22)  /  表(2)
计量
  • 文章访问数:  1367
  • HTML全文浏览量:  341
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-04-05
  • 录用日期:  2020-04-08
  • 网络出版日期:  2020-09-26
  • 发布日期:  2020-09-27

目录

    /

    返回文章
    返回