ISSN   1004-0595

CN  62-1224/O4

高级检索

列车车轮滚动接触疲劳裂纹评价研究

刘颍宾, 宫彦华, 王强, 高伟, 张哲峰

刘颍宾, 宫彦华, 王强, 高伟, 张哲峰. 列车车轮滚动接触疲劳裂纹评价研究[J]. 摩擦学学报, 2020, 40(3): 305-313. DOI: 10.16078/j.tribology.2019210
引用本文: 刘颍宾, 宫彦华, 王强, 高伟, 张哲峰. 列车车轮滚动接触疲劳裂纹评价研究[J]. 摩擦学学报, 2020, 40(3): 305-313. DOI: 10.16078/j.tribology.2019210
LIU Yingbin, GONG Yanhua, WANG Qiang, GAO Wei, ZHANG Zhefeng. Evaluation of Rolling Contact Fatigue Crack of Train Wheels[J]. TRIBOLOGY, 2020, 40(3): 305-313. DOI: 10.16078/j.tribology.2019210
Citation: LIU Yingbin, GONG Yanhua, WANG Qiang, GAO Wei, ZHANG Zhefeng. Evaluation of Rolling Contact Fatigue Crack of Train Wheels[J]. TRIBOLOGY, 2020, 40(3): 305-313. DOI: 10.16078/j.tribology.2019210

列车车轮滚动接触疲劳裂纹评价研究

基金项目: 中国科学院战略性先导科技专项(B类) (XDB22020202)资助
详细信息
  • 中图分类号: TH117.3

Evaluation of Rolling Contact Fatigue Crack of Train Wheels

Funds: The project was supported by the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences (B) (XDB22020202)
More Information
    Corresponding author:

    WANG Qiang: E-mail: gmwang@imr.ac.cn, Tel: +86-24-83978226

  • 摘要: 列车车轮踏面表层金属滚动接触疲劳是影响列车运行安全性和舒适性的核心科学问题. 借助金相显微镜、扫描电镜、透射电镜和显微硬度计,通过开展列车车轮材料的标准滚动接触疲劳试验,将标准接触疲劳样品的损伤行为与实际服役车轮的损伤行为对比分析,研究了列车车轮的滚动接触疲劳裂纹评价方法. 结果表明:车轮表层金属接触疲劳开裂是表层金属累积塑性变形损伤的结果;标准滚动接触疲劳样品剥离坑的深度恰好等于硬化层的深度,实际服役车轮剥离坑的深度小于硬化层的深度;将车轮表面的滚动接触疲劳裂纹命名为“三角形指向性裂纹”;初步建立了车轮表面滚动接触疲劳损伤程度的定量评价方法.
    Abstract: Rolling contact fatigue of the wheel tread, which affects the safety and comfort of train, is the key scientific issue. Standard rolling contact fatigue test was carried out for a common wheel material and the damage behaviors of the standard rolling contact fatigue sample and the service wheel were compared using metallographic microscope, scanning electron microscope, transmission electron microscope and microhardness tester. The rolling contact fatigue crack evaluation method of the train wheel were studied. The results show that the rolling contact fatigue cracking is the result of cumulative plastic deformation damage of the surface metal. The depth of the spalling pit of the standard rolling contact fatigue sample is exactly equal to the depth of the hardened layer. The depth of the spalling pit of the service wheel is less than the depth of the hardening layer. The rolling contact fatigue crack on the wheel surface is designated as “triangular directional crack. Quantitative evaluation method for rolling contact fatigue damage degree of wheel surface was proposed.
  • 图  1   滚动接触疲劳主试样(车轮)(a)和陪试样(钢轨) (b)的尺寸

    Figure  1.   Specimen size of (a) rolling contact fatigue main sample and (b) accompanying sample

    图  2   标准滚动接触疲劳试样表面损伤形貌

    Figure  2.   Surface morphology of the damaged standard rolling contact fatigue sample

    图  3   实际服役某车轮踏面裂纹特征

    Figure  3.   Crack characteristics of a service wheel tread

    图  4   标准接触疲劳样品(a)和服役车轮(b)剥离坑截面形貌

    Figure  4.   Spalling pit cross-section topography of (a) the standard rolling contact fatigue sample and (b) service wheel

    图  5   标准接触疲劳样品表面未剥离(a) (b)及剥离坑(c) (d) (e)的微观形貌

    Figure  5.   Micro-morphology of the surface of the standard rolling contact fatigue sample (a) (b) without spalling and (c) (d) (e) spalling pit

    图  6   标准接触疲劳样品(a)和实际服役车轮(b)剥离坑左侧、中间和右侧近表层显微硬度梯度

    Figure  6.   Gradient microhardness of the left,middle and right sides of the spalling pit on (a) the standard rolling contact fatigue sample and (b) service wheel

    图  7   标准接触疲劳样品(a)和实际服役车轮(b)近表层微观组织形变规律

    Figure  7.   Near-surface microstructure deformation of (a) the standard rolling contact fatigue sample and (b) service wheel

    图  8   标准接触疲劳样品基体(a)(b)、形变层(c)(d)以及实际服役车轮形变层(e)(f)透射电镜观察

    Figure  8.   Transmission electron microscopic observation of (a) (b) the standard rolling contact fatigue sample matrix,(c) (d) deformed layer and (e) (f) service wheel deformed layer

    图  9   车轮试样表面金属滚动接触剥离剥落示意图

    Figure  9.   Schematic diagram of rolling contact fatigue spalling on wheel sample surface

    图  10   三角形指向性裂纹示意图(a)及统计图(b)

    Figure  10.   (a) Triangular directional crack diagram and (b) statistical diagram

    图  11   滚动接触疲劳样品裂纹扩展路径

    Figure  11.   Crack propagation path of the rolling contact fatigue sample

    表  1   轮轨材料化学成分 (质量分数)

    Table  1   Chemical composition of wheel and rail material (mass fraction)

    Materialw(C)/%w(Si)/%w(Mn)/%w(P)/%w(S)/%w(Cr)/%w(Cu)/%w(Mo)/%w(Ni)/%w(V)/%
    Wheel0.560.350.780.0070.0070.150.140.030.12<0.02
    Rail0.710.390.100.0130.011
    下载: 导出CSV

    表  2   车轮材料机械性能

    Table  2   Mechanical properties of wheel material

    Yeild strength,σ0.2/MPaTensile strength,σb/MPaElongation/%Microhardness/HV
    60194519294
    下载: 导出CSV

    表  3   滚动接触疲劳试验条件

    Table  3   Rolling contact fatigue test condition

    Contact stress/MPaSlip/%Speed/(r/min)Experimental environmentAccompanying material
    1 4000.31 000Water lubricationU71MnG
    下载: 导出CSV

    表  4   滚动接触疲劳裂纹数据统计表

    Table  4   Statistics data of the rolling contact fatigue crack

    Crack number1#2#3#4#5#6#7#8#9#10#11#12#13#
    Crack straight lengthd inward/μm113143167205220222241249253380448732892
    Crack propagation depth/μm8899113149154131158123159214288410219
    Crack propagation angle,β/(°)42294246523339334033423727
    Statistics (13)Mean valueMaximum valueMinimum valueRangeMid-value
    Crack straight lengthd inward /μm328892113779241
    Crack propagation depth /μm17741088322154
    Crack propagation angle,β/(°)3852272539
    下载: 导出CSV
  • [1]

    Grassie S L. Rolling contact fatigue on the british railway system: treatment[J]. Wear, 2005, 258: 1310–1318. doi: 10.1016/j.wear.2004.03.065

    [2]

    Ishida M, Ban T, Lida K, et al. Effect of moderating friction of wheel/rail interface on vehicle/track dynamic behavior[J]. Wear, 2008, 265: 1497–1503. doi: 10.1016/j.wear.2008.02.041

    [3] 于荣泉, 李强, 李娜, 等. 车轮滚动接触疲劳裂纹萌生寿命预测[J]. 铁道学报, 2015, 37(12): 20–24 doi: 10.3969/j.issn.1001-8360.2015.12.004

    Yu Rongquan, Li Qiang, Li Na, et al. Numerical analysis on prediction of rolling contact fatigue crack initiation life of wheel[J]. Journal of the China Railway Society, 2015, 37(12): 20–24 doi: 10.3969/j.issn.1001-8360.2015.12.004

    [4]

    Garnham J E, Davis C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9): 1363–1372.

    [5]

    Bold P E, Brown M W, Allen R J. Shear mode crack growth and rolling contact fatigue[J]. Wear, 1991, 144: 307–317. doi: 10.1016/0043-1648(91)90022-M

    [6]

    Eadie D T, Elvidge D, Oldknow K. The effect of top of rail friction modifier on wear and rolling contact fatigue: Full-scale Fail-wheel test rig evaluation, analysis and modelling[J]. Wear, 2008, 265: 1222–1230. doi: 10.1016/j.wear.2008.02.029

    [7] 李霞, 温泽峰, 金学松. 重载铁路车轮磨耗和滚动接触疲劳研究[J]. 铁道学报, 2011, 33(3): 28–34 doi: 10.3969/j.issn.1001-8360.2011.03.005

    Li Xia, Wen Zefeng, Jin Xuesong. Investigation into wheel wear and fatigue of heavy-haul railways[J]. Journal of the China Railway Society, 2011, 33(3): 28–34 doi: 10.3969/j.issn.1001-8360.2011.03.005

    [8] 周宇, 黄旭炜, 张东风, 等. 重载铁路车辆轴重对钢轨疲劳裂纹萌生和磨耗发展的影响[J]. 华东交通大学学报, 2019, 36(4): 8–16

    Zhou Yu, Huang Xuwei, Zhang Dongfeng, et al. Influence of axle load of heavy-duty railway vehicles on fatigue crack initiation and wear development of rails[J]. Journal of East China Jiaotong University, 2019, 36(4): 8–16

    [9] 何成刚, 周桂源, 王娟, 等. 曲率半径对车轮滚动接触疲劳性能的影响[J]. 摩擦学学报, 2014, 34(3): 256–261 doi: 10.3969/j.issn.0258-2724.2009.02.020

    He Chenggang, Zhou Guiyuan, Wang Juan, et al. Effect of curve radius of rail on rolling contact fatigue properties of wheel steel[J]. Tribology, 2014, 34(3): 256–261 doi: 10.3969/j.issn.0258-2724.2009.02.020

    [10] 田光荣, 张卫华, 池茂儒. 重载列车曲线通过性能研究[J]. 铁道学报, 2009, 31(4): 98–103

    Tian Guangrong, Zhang Weihua, Chi Maoru. Study on curve negotiation performance of heavy-haul train[J]. Journal of the China Railway Society, 2009, 31(4): 98–103

    [11] 周桂源, 何成刚, 刘吉华, 等. 冲角工况下列车车轮损伤机理研究[J]. 摩擦学学报, 2015, 35(6): 768–773 doi: 10.16078/j.tribology.2015.06.017

    Zhou Guiyuan, He Chenggang, Liu Qiyue. Damage mechanism of railway wheels under condition with angle of attack[J]. Tribology, 2015, 35(6): 768–773 doi: 10.16078/j.tribology.2015.06.017

    [12] 肖乾, 方骏, 王磊. 摩擦系数对高速列车车轮瞬时滚动接触疲劳的影响[J]. 中国铁道科学, 2016, 37(3): 68–74 doi: 10.3969/j.issn.1001-4632.2016.03.010

    Xiao Qian, Fang Jun, Wang Lei. Effect of friction coefficient on instant rolling contact fatigue of high speed train wheels[J]. China Railway Science, 2016, 37(3): 68–74 doi: 10.3969/j.issn.1001-4632.2016.03.010

    [13] 曾东方. 高速铁路车轮钢磨损和滚动接触疲劳性的改善方法研究[D]. 成都: 西南交通大学, 2017

    Zeng Dongfang. Study on methods for improving resistance to wear and rolling contact fatigue of high-speed railway wheel steel[M]. Chengdu: Southwest Jiaotong University, 2017(in Chinese)

图(11)  /  表(4)
计量
  • 文章访问数:  2259
  • HTML全文浏览量:  381
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2019-12-02
  • 录用日期:  2019-12-26
  • 网络出版日期:  2020-05-13
  • 发布日期:  2020-05-27

目录

    /

    返回文章
    返回