-
摘要: 列车车轮踏面表层金属滚动接触疲劳是影响列车运行安全性和舒适性的核心科学问题. 借助金相显微镜、扫描电镜、透射电镜和显微硬度计,通过开展列车车轮材料的标准滚动接触疲劳试验,将标准接触疲劳样品的损伤行为与实际服役车轮的损伤行为对比分析,研究了列车车轮的滚动接触疲劳裂纹评价方法. 结果表明:车轮表层金属接触疲劳开裂是表层金属累积塑性变形损伤的结果;标准滚动接触疲劳样品剥离坑的深度恰好等于硬化层的深度,实际服役车轮剥离坑的深度小于硬化层的深度;将车轮表面的滚动接触疲劳裂纹命名为“三角形指向性裂纹”;初步建立了车轮表面滚动接触疲劳损伤程度的定量评价方法.Abstract: Rolling contact fatigue of the wheel tread, which affects the safety and comfort of train, is the key scientific issue. Standard rolling contact fatigue test was carried out for a common wheel material and the damage behaviors of the standard rolling contact fatigue sample and the service wheel were compared using metallographic microscope, scanning electron microscope, transmission electron microscope and microhardness tester. The rolling contact fatigue crack evaluation method of the train wheel were studied. The results show that the rolling contact fatigue cracking is the result of cumulative plastic deformation damage of the surface metal. The depth of the spalling pit of the standard rolling contact fatigue sample is exactly equal to the depth of the hardened layer. The depth of the spalling pit of the service wheel is less than the depth of the hardening layer. The rolling contact fatigue crack on the wheel surface is designated as “triangular directional crack. Quantitative evaluation method for rolling contact fatigue damage degree of wheel surface was proposed.
-
-
表 1 轮轨材料化学成分 (质量分数)
Table 1 Chemical composition of wheel and rail material (mass fraction)
Material w(C)/% w(Si)/% w(Mn)/% w(P)/% w(S)/% w(Cr)/% w(Cu)/% w(Mo)/% w(Ni)/% w(V)/% Wheel 0.56 0.35 0.78 0.007 0.007 0.15 0.14 0.03 0.12 <0.02 Rail 0.71 0.39 0.10 0.013 0.011 − − − − − 表 2 车轮材料机械性能
Table 2 Mechanical properties of wheel material
Yeild strength,σ0.2/MPa Tensile strength,σb/MPa Elongation/% Microhardness/HV 601 945 19 294 表 3 滚动接触疲劳试验条件
Table 3 Rolling contact fatigue test condition
Contact stress/MPa Slip/% Speed/(r/min) Experimental environment Accompanying material 1 400 0.3 1 000 Water lubrication U71MnG 表 4 滚动接触疲劳裂纹数据统计表
Table 4 Statistics data of the rolling contact fatigue crack
Crack number 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# Crack straight lengthd inward/μm 113 143 167 205 220 222 241 249 253 380 448 732 892 Crack propagation depth/μm 88 99 113 149 154 131 158 123 159 214 288 410 219 Crack propagation angle,β/(°) 42 29 42 46 52 33 39 33 40 33 42 37 27 Statistics (13) Mean value Maximum value Minimum value Range Mid-value Crack straight lengthd inward /μm 328 892 113 779 241 Crack propagation depth /μm 177 410 88 322 154 Crack propagation angle,β/(°) 38 52 27 25 39 -
[1] Grassie S L. Rolling contact fatigue on the british railway system: treatment[J]. Wear, 2005, 258: 1310–1318. doi: 10.1016/j.wear.2004.03.065
[2] Ishida M, Ban T, Lida K, et al. Effect of moderating friction of wheel/rail interface on vehicle/track dynamic behavior[J]. Wear, 2008, 265: 1497–1503. doi: 10.1016/j.wear.2008.02.041
[3] 于荣泉, 李强, 李娜, 等. 车轮滚动接触疲劳裂纹萌生寿命预测[J]. 铁道学报, 2015, 37(12): 20–24 doi: 10.3969/j.issn.1001-8360.2015.12.004 Yu Rongquan, Li Qiang, Li Na, et al. Numerical analysis on prediction of rolling contact fatigue crack initiation life of wheel[J]. Journal of the China Railway Society, 2015, 37(12): 20–24 doi: 10.3969/j.issn.1001-8360.2015.12.004
[4] Garnham J E, Davis C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9): 1363–1372.
[5] Bold P E, Brown M W, Allen R J. Shear mode crack growth and rolling contact fatigue[J]. Wear, 1991, 144: 307–317. doi: 10.1016/0043-1648(91)90022-M
[6] Eadie D T, Elvidge D, Oldknow K. The effect of top of rail friction modifier on wear and rolling contact fatigue: Full-scale Fail-wheel test rig evaluation, analysis and modelling[J]. Wear, 2008, 265: 1222–1230. doi: 10.1016/j.wear.2008.02.029
[7] 李霞, 温泽峰, 金学松. 重载铁路车轮磨耗和滚动接触疲劳研究[J]. 铁道学报, 2011, 33(3): 28–34 doi: 10.3969/j.issn.1001-8360.2011.03.005 Li Xia, Wen Zefeng, Jin Xuesong. Investigation into wheel wear and fatigue of heavy-haul railways[J]. Journal of the China Railway Society, 2011, 33(3): 28–34 doi: 10.3969/j.issn.1001-8360.2011.03.005
[8] 周宇, 黄旭炜, 张东风, 等. 重载铁路车辆轴重对钢轨疲劳裂纹萌生和磨耗发展的影响[J]. 华东交通大学学报, 2019, 36(4): 8–16 Zhou Yu, Huang Xuwei, Zhang Dongfeng, et al. Influence of axle load of heavy-duty railway vehicles on fatigue crack initiation and wear development of rails[J]. Journal of East China Jiaotong University, 2019, 36(4): 8–16
[9] 何成刚, 周桂源, 王娟, 等. 曲率半径对车轮滚动接触疲劳性能的影响[J]. 摩擦学学报, 2014, 34(3): 256–261 doi: 10.3969/j.issn.0258-2724.2009.02.020 He Chenggang, Zhou Guiyuan, Wang Juan, et al. Effect of curve radius of rail on rolling contact fatigue properties of wheel steel[J]. Tribology, 2014, 34(3): 256–261 doi: 10.3969/j.issn.0258-2724.2009.02.020
[10] 田光荣, 张卫华, 池茂儒. 重载列车曲线通过性能研究[J]. 铁道学报, 2009, 31(4): 98–103 Tian Guangrong, Zhang Weihua, Chi Maoru. Study on curve negotiation performance of heavy-haul train[J]. Journal of the China Railway Society, 2009, 31(4): 98–103
[11] 周桂源, 何成刚, 刘吉华, 等. 冲角工况下列车车轮损伤机理研究[J]. 摩擦学学报, 2015, 35(6): 768–773 doi: 10.16078/j.tribology.2015.06.017 Zhou Guiyuan, He Chenggang, Liu Qiyue. Damage mechanism of railway wheels under condition with angle of attack[J]. Tribology, 2015, 35(6): 768–773 doi: 10.16078/j.tribology.2015.06.017
[12] 肖乾, 方骏, 王磊. 摩擦系数对高速列车车轮瞬时滚动接触疲劳的影响[J]. 中国铁道科学, 2016, 37(3): 68–74 doi: 10.3969/j.issn.1001-4632.2016.03.010 Xiao Qian, Fang Jun, Wang Lei. Effect of friction coefficient on instant rolling contact fatigue of high speed train wheels[J]. China Railway Science, 2016, 37(3): 68–74 doi: 10.3969/j.issn.1001-4632.2016.03.010
[13] 曾东方. 高速铁路车轮钢磨损和滚动接触疲劳性的改善方法研究[D]. 成都: 西南交通大学, 2017 Zeng Dongfang. Study on methods for improving resistance to wear and rolling contact fatigue of high-speed railway wheel steel[M]. Chengdu: Southwest Jiaotong University, 2017(in Chinese)