Abstract:
Currently, hydrocarbons have attracted much attention, but the problem caused by the wear of the moving parts urgently needs to be solved. Diamond-like carbon (DLC) films are widely used in many fields due to their excellent tribological properties. However, the mechanism for tribological behavior of DLC film under hydrocarbon atmospheres is still unclear. Here, the tribological behavior of amorphous carbon (a-C) film with different counterpart balls was studied. The mechanism of the friction behavior of these systems was investigated. And the results show that the counterpart balls had a significant influence on the tribological behavior of a-C film, which mainly causes the different tribological behavior between these system by affecting the re-hybridization form of the sliding interface. Moreover, the passivation of the carbon dangling bonds with groups dissociated from the methane can effectively reduce the friction of the system, but excessive passivation resulted in the formation of poly-a-C:H, which adversely affected the system. The results provide a reference for improving the anti-wear and lubrication properties of DLC film under hydrocarbons.