Effects of Liquid Nitrogen Shock Chilling on the Performance of Hydrogenated Amorphous Carbon Films
-
摘要: 采用等离子增强化学气相沉积系统制备了含氢非晶碳膜. 加热到相应温度(200、250、300、350和400 ℃)后,对薄膜进行液氮激冷处理,并研究其结构、机械及摩擦性能的变化. 结果表明:薄膜硬度在200~300 ℃温度下液氮激冷后,其硬度随热处理温度增加,C-C sp2键逐渐增加;在350~400 ℃温度下液氮激冷处理后,薄膜的硬度逐渐减小,薄膜呈石墨化趋势;而其弹性恢复在整个处理过程(200~400 ℃)中随温度升高持续增大,和C-C sp2键变化趋势一致. 液氮激冷处理后,含氢非晶碳膜的摩擦系数及磨损量均得到改善,在300 ℃激冷处理的含氢非晶碳膜具备最低的摩擦系数及磨损量.Abstract: The hydrogenated amorphous carbon films were deposited by plasma enhanced chemical vapor deposition system. When the films were heated at the objective temperature, the liquid nitrogen was used for shock chilling. The structures, mechanical and frictional performances variation of the hydrogenated amorphous carbon films were investigated. The results suggest that hardness of films gradually increased with liquid nitrogen shock chilling at 200~300 ℃, and decreased liquid nitrogen shock chilling at 350~400 ℃. The elastic recovery and C-C sp2 bond increased in all experiment. The friction coefficients and wear volumes were all reduced after liquid nitrogen shock chilling, particularly under the temperature of 300 ℃ which showed the minimum of friction coefficient and wear volume.
-
Keywords:
- a-C:H film /
- shock chilling /
- friction /
- wear /
- thermal stability
-
图 2 不同热处理温度下a-C:H薄膜的ID/IG和G峰半峰宽(a)和sp2团簇的尺寸(b),(c),(d)和(e)分别是未处理的薄膜、在300 ℃和400 ℃下激冷的薄膜的HRTEM照片
Figure 2. The value of ID/IG and FWHM of G peak (a) and the size of cluster of sp2 (b) of a-C:H films at different heat-treat temperature. The pictures of (c), (d) and (e) are HRTEM figures of untreated, 300 ℃ and 400 ℃, respectively
-
[1] Zhou B, Prorok B C, Erdemir A, et al. Microfabrication issues in constructing freestanding membranes of near-frictionless carbon and diamond-like films[J]. Diamond and Related Materials, 2007, 16(2): 342–349. doi: 10.1016/j.diamond.2006.06.021
[2] Robertson J. Diamond-like amorphous carbon[J]. Materials Science & Engineering R-Reports, 2002, 37(4-6): 129–281.
[3] 王成兵, 李红轩, 徐洮. 相对湿度对类金刚石薄膜摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(5): 426–430 doi: 10.3321/j.issn:1004-0595.2005.05.010 Wang Chengbin, Li Hongxuan, Xu Tao. Tribological property of diamond-like carbon film at different humidity in air[J]. Tribology, 2005, 25(5): 426–430 doi: 10.3321/j.issn:1004-0595.2005.05.010
[4] Vanhulsel A, Velasco F, Jacobs R, et al. DLC solid lubricant coatings on ball bearings for space applications[J]. Tribology International, 2007, 40(7): 1186–1194. doi: 10.1016/j.triboint.2006.12.005
[5] Hauert R. A review of modified DLC coatings for biological applications[J]. Diamond and Related Materials, 2003, 12(3-7): 583–589. doi: 10.1016/S0925-9635(03)00081-5
[6] 张俊彦. 涂层的摩擦学设计及其研究进展[J]. 摩擦学学报, 2006, 26(4): 387–396 doi: 10.3321/j.issn:1004-0595.2006.04.020 Zhang Junyan. Design and research advances of tribological films and coating[J]. Tribology, 2006, 26(4): 387–396 doi: 10.3321/j.issn:1004-0595.2006.04.020
[7] Cruz R, Rao J, Rose T, et al. DLC-ceramic multilayers for automotive applications[J]. Diamond and Related Materials, 2006, 15(11-12): 2055–2060. doi: 10.1016/j.diamond.2006.07.006
[8] 张艳, 东梅, 李媚, 等. 纳尺度下类金刚石(DLC)薄膜摩擦性能研究[J]. 摩擦学学报, 2015, 35(2): 242–248 doi: 10.16078/j.tribology.2015.02.017 Zhang Yan, Dong Mei, Li Mei, et al. Investigation on the nano-friction properties of diamond-like carbon films[J]. Tribology, 2015, 35(2): 242–248 doi: 10.16078/j.tribology.2015.02.017
[9] 汪佳, 王富国, 曹忠跃, 等. 运动黏度在FLC薄膜-白油固液复合润滑体系中的作用[J]. 摩擦学学报, 2016, 36(4): 438–444. doi: 10.16078/j.tribology.2016.04.006 [10] Li Hongxuan, Xu Tao, Wang Chengbing, eet al. Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films[J]. Thin Solid Films, 2006, 515: 2153–2160. doi: 10.1016/j.tsf.2006.04.018
[11] Orwa J O, Andrienko I, Peng J L, et al. Thermally induced sp3 clustering in tetrahedral amorphous carbon films[J]. Journal of Applied Physics, 2004, 96: 6286–6297. doi: 10.1063/1.1808918
[12] Tay B K, Sheeja D, Lau S P, et al. Time and temperature-dependent changes in the structural properties of tetrahedral amorphous carbon films[J]. Surface and Coatings Technology, 2000, 130(2-3): 248–251. doi: 10.1016/S0257-8972(00)00699-X
[13] Akkerman Z L, Efstathiadisn H, Smith F W. Thermal stability of diamond-like carbon films[J]. Journal of Applied Physics, 1996, 80: 3068–3057. doi: 10.1063/1.363167
[14] Zhang Q, Yoon S F, Rusli, et al. Influence of oxygen on the thermal stability of amorphous hydrogenated carbon films[J]. Journal of Applied Physics, 1998, 83: 1349–1353. doi: 10.1063/1.367311
[15] Irmer G, Dorner-Reisel A. Micro‐Raman studies on DLC coatings[J]. Advanced Engineering Materials, 2005, 7: 694–705. doi: 10.1002/adem.200500006
[16] Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Physical Review B, 2001, 64: 075414. doi: 10.1103/PhysRevB.64.075414
[17] Filik J, May P W, Pearce S R J, et al. XPS and laser raman analysis of hydrogenated amorphous carbon films[J]. Diamond and Related Materials, 2003, 12: 974–978. doi: 10.1016/S0925-9635(02)00374-6
[18] Jones P M, Ahner J, Plat C L, et al. Understanding disk carbon loss kinetics for heat assisted magnetic recording[J]. IEEE Transactions on Magnetics, 2014, 50: 144–147. doi: 10.1109/TMAG.2013.2285599
[19] Zhang Y, Polychronopoulou K, Humood M, et al. High temperature nanotribology of ultrathin hydrogenated amorphous carbon coatings[J]. Carbon, 2017, 123: 112–121. doi: 10.1016/j.carbon.2017.07.047
[20] Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering, 2002, 37: 129–281. doi: 10.1016/S0927-796X(02)00005-0
[21] Gong Z B, Jia X, Ma W, et al. Hierarchical structure graphitic-like/MoS2 film as superlubricity material[J]. Applied Surface Science, 2017, 413: 381–386. doi: 10.1016/j.apsusc.2017.04.057
[22] Wang Z, Gong Z, Zhang B, et al. Heating induced nanostructure and superlubricity evolution of fullerene-like hydrogenated carbon films[J]. Solid State Sciences, 2019, 90: 29–33. doi: 10.1016/j.solidstatesciences.2019.01.011
[23] Sjostrom H, Stafstrom S, Boman M, et al. Superhard and elastic carbon nitride thin films having fullerenelike microstructure[J]. Physical Review Letters, 1995, 75(7): 1336–1339. doi: 10.1103/PhysRevLett.75.1336
[24] Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior[J]. Wear, 2000, 246: 1–11. doi: 10.1016/S0043-1648(00)00488-9
[25] Galvan D, Pei Y T, De Hosson J T M D. Deformation and failure mechanism of nano-composite coatings under nano-indentation[J]. Surface and Coatings Technology, 2006, 200: 6718–6726. doi: 10.1016/j.surfcoat.2005.10.010
[26] Donnet, C, Erdemir, A. Tribology of diamond-like carbon films: fundamentals and applications[M]. New York: Springer, 2008.
[27] Gong Z, Shi J, Ma W, et al. Engineering-scale superlubricity of the fingerprint-like carbon films based on high power pulsed plasma enhanced chemical vapor deposition[J]. RSC Advance, 2016, 6: 115092. doi: 10.1039/C6RA24933G
-
期刊类型引用(3)
1. 朱睿,王谦之. 冷热复合处理对CrN涂层结构及力学性能的影响. 材料保护. 2023(09): 48-53 . 百度学术
2. 闫明明,剡珍,王新宇,鲁晓龙,隋旭东,郝俊英,刘维民. C_2H_2/Ar流量比对a-C:H涂层结构及摩擦学性能的影响. 摩擦学学报. 2022(03): 588-597 . 本站查看
3. 黄民备,赖振国,张斌,龙美彪,高凯雄,张俊彦. 含氢碳薄膜500℃退火前后摩擦学行为研究. 表面技术. 2022(10): 192-199 . 百度学术
其他类型引用(2)