-
摘要: 理论研究表明不同润湿性界面对流体动压润滑油膜厚度有着显著地影响,一般采用接触角(CA)来表征固液界面润湿性. 而由热力学原理推导出的界面势能垒理论模型不仅与接触角相关,也是接触角滞后(CAH)的函数. 本文作者通过对不同基体材料的滑块进行表面张力修饰,获得了不同亲和性的界面. 利用干涉法及荧光法分别测量了不同润湿性界面的流体动压润滑膜厚及油膜受剪切的流动特性,研究了接触角及接触角滞后两个界面参数对流体动压润滑油膜厚度的影响,并对势能垒与接触角滞后的关系进行了讨论. 结果表明:接触角与流体动压润滑油膜厚度的相关性较差,接触角滞后可以更好地表征界面效应对流体动压润滑油膜厚度的影响.Abstract: Theoretical studies have proved that different solid-liquid affinity surfaces have significant effects on hydrodynamic lubrication film. In general, contact angle (CA) is used to characterize the wettability of solid-liquid interface. However a theoretical model derived based on thermodynamic principles shows that the potential energy barrier of a surface is not only a function of contact angle, but also of another interfacial parameter, contact angle hysteresis (CAH). By modifying the surface of the slider, different affinity interfaces were obtained. The lubricating film thickness and the continuity of flow velocity were measured by a fixed-inclined slider bearing system using optical interference method and fluorescence method respectively. This study thus evaluated the two, CA and CAH, by conducting thin film hydrodynamic lubrication experiments with surfaces of hydrophilic and hydrophobic. Fundamental relation between the potential energy barrier and CAH was discussed. The results show that the correlation between CA and hydrodynamic lubrication oil film thickness was unsatisfactory. But CAH can better characterize the influence of interface effect on the hydrodynamic lubrication film thickness.
-
-
表 1 试验所用润滑油特性(@22℃)
Table 1 Properties of lubricants used in the test (@22℃)
Lubricant Dynamic viscosity,η/(mPa·s) Refractive index,N PEG200 59.7 1.46 PEG400 112.7 1.46 PEG600 160.5 1.47 PAO10 122.2 1.46 表 2 试验所用PEG润滑油在滑块表面的接触角及接触角滞后
Table 2 CA and CAH of the PEG lubricants on the slider surfaces
Slider Lubricant Contact
angle,CA/(°)Contact angle
hysteresis,CAH/(°)Steel PEG400 $50.3_{ - 2.3}^{ + 3.2}$ $28.9_{ - 6.3}^{ + 3.1}$ FAS PEG400 $95.3_{ - 2.1}^{ + 3.2}$ $13.5_{ - 4.4}^{ + 1.9}$ AF PEG400 $86.7_{ - 1.7}^{ + 0.8}$ $28.8_{ - 3.1}^{ + 2.8}$ SiO2 PEG400 $26.7_{ - 1.7}^{ + 3.8}$ $33.2_{ - 2.5}^{ + 1.7}$ SiO2+AF PEG400 $87.5_{ - 1.1}^{ + 1.4}$ $30.38_{ - 4.3}^{ + 4.1}$ Steel PEG200 $54.6_{ - 1.6}^{ + 1.4}$ $29.4_{ - 2.7}^{ + 2.3}$ FAS PEG200 $102.2_{ - 1.2}^{ + 0.8}$ $10.8_{ - 2.3}^{ + 3.2}$ Steel PEG600 $47.5_{ - 5.0}^{ + 5.0}$ $30.5_{ - 3.2}^{ + 2.1}$ FAS PEG600 $94.1_{ - 1.6}^{ + 1.9}$ $11.2_{ - 2.6}^{ + 2.1}$ FAS PAO10 $70.2_{ - 2.2}^{ + 3.3}$ $22.5_{ - 2.6}^{ + 2.7}$ AF PAO10 $57.6_{ - 5.0}^{ + 1.9}$ $27.5_{ - 2.2}^{ + 2.1}$ -
[1] Patton S T, Zabinski J S. Failure mechanisms of a MEMS actuator in very high vacuum[J]. Tribology International, 2002, 35(6): 373–379. doi: 10.1016/S0301-679X(02)00018-X
[2] Nosonovsky M, Bhushan B. Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology[J]. Materials Science & Engineering R, 2007, 58(3): 162–193.
[3] Alicia E, Fortier. Numerical analysis of a slider bearing with a heterogeneous slip/no-slip surface[J]. Tribology Transactions, 2004, 47(3): 328–334. doi: 10.1080/05698190490455348
[4] 尹振鑫. 高压高剪切流体边界滑移机理与剪切特性研究[D]. 北京理工大学, 2015 Yin Zhenxin. Study on the mechanism and shear characteristics of boundary slip under high pressure and shear rate condition[D].Beijing: Beijing Institute of technology, 2015(in Chinese)
[5] 栗心明, 郭峰, 黄柏林. 高压条件下界面滑移长度的定量测量[J]. 摩擦学学报, 2012, 32(1): 34–39 doi: 10.16078/j.tribology.2012.01.012 Li Xinming, Guo Feng, Huang Bolin. Quantitative measurement of slip length under high pressure conditions[J]. Tribology Letters, 2012, 32(1): 34–39 doi: 10.16078/j.tribology.2012.01.012
[6] 吴承伟, 马国军, 周平. 流体流动的边界滑移问题研究进展[J]. 力学进展, 2008, 38(3): 265–282 doi: 10.3321/j.issn:1000-0992.2008.03.001 Wu Chengwei, Ma Guojun, Zhou Ping. A review of the study on the boundary slip problems of fluid flow[J]. Advances in Mechanics, 2008, 38(3): 265–282 doi: 10.3321/j.issn:1000-0992.2008.03.001
[7] Barrat J L, Lydé, Bocquet R. Large slip effect at a nonwetting fluid-solid interface[J]. Physical Review Letters, 1999, 82(23): 4671–4674. doi: 10.1103/PhysRevLett.82.4671
[8] Zhu Y, Granick S. Rate-dependent slip of newtonian liquid at smooth surfaces[J]. Physical Review Letters, 2001, 87(9): 096105. doi: 10.1103/PhysRevLett.87.096105
[9] Choo J H, Glovnea R P, Forrest A K, et al. A low friction bearing based on liquid slip at the wall[J]. Journal of Tribology, 2007, 129(3): 469–477.
[10] Choo J H, Spikes H A, Ratoi M, et al. Friction reduction in low-load hydrodynamic lubrication with a hydrophobic surface[J]. Tribology International, 2007, 40(2): 154–159. doi: 10.1016/j.triboint.2005.09.006
[11] 马学虎, 杜宾港, 胡少波, 等. 接触角滞后对组合表面液滴运动的影响[J]. 工程热物理学报, 2017, 38(4): 855–861 Ma Xuehu, Du Bingang, Hu Shaobo, et al. Effect of contact angle hysteresis on droplet dynamic behaviors for hybrid surface[J]. Journal of Engineering Thermophysics, 2017, 38(4): 855–861
[12] 杨淑燕, 郭峰, 马冲. 固液润湿性对流体动压润滑薄膜的影响[J]. 摩擦学学报, 2010, 30(2): 203–208 doi: 10.16078/j.tribology.2010.02.015 Yang Shuyan, Guo Feng, Ma Chong, et al. Influences of the liquid/solid wettability on thin hydrodynamic lubrication films[J]. Tribology Letters, 2010, 30(2): 203–208 doi: 10.16078/j.tribology.2010.02.015
[13] 王茜, 郭峰, 韩素立. 固体表面润湿性对滑块-盘接触润滑供油的影响[J]. 摩擦学学报, 2019, 39(1): 73–81 doi: 10.16078/j.tribology.2018115 Wang Qian, Guo Feng, Han Suli. Influence of surface wettability on the lubricating oil supply in a slider-on-disc contact[J]. Tribology Letters, 2019, 39(1): 73–81 doi: 10.16078/j.tribology.2018115
[14] 王志君, 郭峰, 田鹏晖. 界面黏附功与润滑油膜厚度的相关性研究[J]. 润滑与密封, 2016, 41(12): 52–56 doi: 10.3969/j.issn.0254-0150.2016.12.011 Wang Zhijun, Guo Feng, Tian Penghui. Correlation of interface adhesion work and hydrodynamic lubrication[J]. lubrication and Sealing, 2016, 41(12): 52–56 doi: 10.3969/j.issn.0254-0150.2016.12.011
[15] Bonaccurso E, Kappl M, Butt H J. Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects[J]. Physical Review Letters, 2002, 88(7): 076103. doi: 10.1103/PhysRevLett.88.076103
[16] Bongaerts J, Fourtouni K, Stokes J R. Soft-tribology: Lubrication in a compliant PDMS-PDMS contact[J]. Tribology International, 2007, 39(10): 1531–1542.
[17] Cho J H, Law B M, Rieutord F. Dipole-dependent slip of newtonian liquids at smooth solid hydrophobic surfaces[J]. Physical Review Letters, 2004, 92(16): 166102. doi: 10.1103/PhysRevLett.92.166102
[18] Guo L, Wong P L, Guo F. Correlation of contact angle hysteresis and hydrodynamic lubrication[J]. Tribology Letters, 2015, 59(3): 44. doi: 10.1007/s11249-015-0572-8
[19] Wang D, Wang X, Liu X, et al. Engineering a titanium surface with controllable oleophobicity and switchable oil adhesion[J]. Journal of Physical Chemistry C, 2010, 114(21): 9938–9944. doi: 10.1021/jp1023185
[20] Bhushan B, Her E K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(11): 8207–17.
[21] 马冲, 郭峰, 付忠学, 等. 微型滑块面接触润滑油膜测量系统[J]. 摩擦学学报, 2010, 30(4): 419–424 doi: 10.16078/j.tribology.2010.04.015 Ma Chong, Guo Feng, FU Zhongxue, et al. Measurement of lubricating oil film thickness in conformal contacts[J]. Tribology Letters, 2010, 30(4): 419–424 doi: 10.16078/j.tribology.2010.04.015
[22] 白清华, 郭峰, 刘海超, 等. 面接触润滑油膜测量系统滑块倾角的快速计算[J]. 摩擦学学报, 2015, 35(5) doi: 10.16078/j.tribology.2015.05.001 Bai Qinghua, Guo Feng, Liu Haichao. A robust approach to determining the slider inclination in a slider-on-disk conformal-contact lubricating film measurement system[J]. Tribology Letters, 2015, 35(5 doi: 10.16078/j.tribology.2015.05.001
[23] 韩素立, 李超, 郭峰, 等. 基于FRAP的微间隙润滑油膜流速测量方法[J]. 光学精密工程, 2017, 25(1): 141–147 Han Suli, Li Chao, Guo Feng, et al. Velocity profile measurement of oil films in a confined gap based on FRAP[J]. Optical and Precision Engineering, 2017, 25(1): 141–147
[24] H A. The half-wetted bearing. Part 1: Extended reynolds equation[J]. Archive Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 1994-1996(vols 208-210), 2003, 217(1): 1-14.
[25] Macdougall G, Ockrent C. Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids[J]. Proceedings of the Royal Society of London, 1942, 180(981): 151–173.
[26] 韩素立, 郭峰, 邵晶, 等. 基于荧光漂白成像的润滑油膜剪切流速测量[J]. 摩擦学学报, 2017, 37(4): 442–448 doi: 10.16078/j.tribology.2017.04.004 Han Suli, Guo Feng, Shao Jing, et al. Velocity profile measurements of oil film under pure shear based on fluorescence photobleaching imaging method[J]. Tribology Letters, 2017, 37(4): 442–448 doi: 10.16078/j.tribology.2017.04.004
[27] Cameron A, Gohar R. Theoretical and experimental studies of the oil film in lubricated point contact[J]. Proceedings of the Royal Society of London A Mathematical Physical & Engineering Sciences, 1966, 291(1427): 520–536.
[28] Joseph P, Tabeling P. Direct measurement of the apparent slip length[J]. Physical review E, Statistical, nonlinear, and soft matter physics, 2005, 71(3 Pt 2A): 035303.
[29] Henry C L, Neto C, Evans D R, et al. The effect of surfactant adsorption on liquid boundary slippage[J]. Physica A Statistical Mechanics & Its Applications, 2004, 339(1): 60–65.
[30] Whyman G, Bormashenko E, Stein T. The rigorous derivation of young, Cassie-baxter and wenzel equations and the analysis of the contact angle hysteresis phenomenon[J]. Chemical Physics Letters, 2008, 450(4-6): 355–359. doi: 10.1016/j.cplett.2007.11.033
[31] Extrand C W. Contact angles and their hysteresis as a measure of liquid-solid adhesion[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2004, 20(10): 4017.
-
期刊类型引用(2)
1. 李少鹏,王德芳,谢文玲,李秀兰,李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响. 材料导报. 2023(18): 176-181 . 百度学术
2. 于子恒,马春红,白少先. SiC表面圆环槽边缘效应实验研究. 物理学报. 2021(04): 254-261 . 百度学术
其他类型引用(2)