-
摘要: 摩擦片的摩擦磨损性能严重影响盘式制动器的使用寿命和客车行驶的安全性. 以灰铸铁HT250圆盘为对偶件,利用销盘式摩擦磨损试验机,在不同温度下对树脂基复合材料摩擦片的摩擦系数和磨损率进行研究,同时应用JSM-651010LA型扫描电子显微镜、HGP-7500型光电直读光谱仪和HXD-1000TMSC型显微硬度测试仪对摩擦磨损表面进行观察和测量,表征其摩擦表面的微观形貌和测定微观硬度,进而推断其磨损机理. 结果表明:在不同温度下,平均摩擦系数和磨损率均随着温度的升高先增加后降低;随着温度升高,摩擦层的面积和其微观硬度的变化和平均摩擦系数、磨损率的变化规律基本相同;在高温摩擦磨损过程中,黏着磨损占主导作用,同时伴随着切削磨损.Abstract: The tribological properties of the pad seriously affect the service lifetime of the disc brake and the safety of the vehicles. By using a high speed tribo-tester, tribological behaviors of resin matrix composite sliding against gray cast iron HT250 were investigated under high speed dry sliding conditions. Friction and wear tests were performed at elevated temperatures to obtain the friction coefficient and wear rate of resin matrix composite pad. Morphology and hardness of the unworn and worn surfaces were analyzed by scanning electron microscope, photoelectric direct reading spectrometer and microhardness tester, and the wear mechanism at elevated temperature was presented. The mean friction coefficient and wear rate were observed to increase firstly and then decrease with the increasing temperature. The variation of the micro hardness and area of the friction layer increase firstly and then decrease with the increasing temperature. Adhesive wear mechanism dominated at higher temperature.
-
Keywords:
- brake pad /
- high temperature wear /
- friction coefficient /
- wear rate
-
表 1 摩擦片材料组成
Table 1 Composition of the pad friction material
Component Mass fraction,w/% Function Phenolic resin 24 Binder Nitrile rubber 5 Binder Steel fiber 10 Reinforcement Twaron 2 Reinforcement BaSO4 9 Friction modifier Synthetic graphite 5 Friction modifier Resilient graphitic carbon 5 Friction modifier MgO 3 Friction modifier ZrSiO4 2 Friction modifier Al2O3 2 Friction modifier Coke 15 filler Vermiculite 5 filler Copper 4 filler Iron powder 3 filler Sb2S3 3 filler Tin 3 filler 表 2 平均摩擦系数与磨损率
Table 2 Mean friction coefficient and wear rate
T/℃ Mean friction coefficient Wear rate/[×10–4mm3·(N·m)-1] Measured Acceptable limit Measured Acceptable limit 100 0.373 0.25~0.65 0.186 0~0.50 150 0.433 0.25~0.70 0.298 0~0.70 200 0.439 0.25~0.70 0.304 0~1.00 250 0.368 0.25~0.70 0.203 0~1.50 300 0.367 0.25~0.70 0.176 0~2.00 350 0.314 0.25~0.70 0.136 0~2.50 -
[1] 汪桂金, 刘文虎, 孙克亮.客车盘式制动器摩擦片前后磨损不均的分析[J]. 客车技术与研究, 2015, 37(4): 53–55.0 Wang Guijin, Liu Wenhu, Sun Kiliang. Analysis of uneven wear of front and rear disc brake discs[J]. Bus & Coach Technology and Research, 2015, 37(4): 53–55(in Chinese)
[2] R Thornton, T Slatter, A H Jones. The effects of cryogenic processing on the wear resistance of grey cast iron brake discs[J]. Wear, 2011, 271(9–10): 2386–2395.
[3] 王观民, 张永振, 杜三明.不同气氛环境中钢/铜摩擦副的高速干滑动摩擦磨损特性研究[J].摩擦学学报, 2007, 27(4): 346–351.0 Wang Guanmin, Zhang Yongzhen, Du Sanmin. High speed dry sliding friction and wear characteristics of steel/copper friction pairs in different atmospheres[J]. Tribology, 2007, 27(4): 346–351(in Chinese)
[4] 吴耀庆.树脂基复合摩擦材料摩擦磨损机理研究及有限元分析[D].武汉: 中国地质大学, 2013. Wu Yaoqing. Study on friction and wear mechanism of resin matrix composite friction material and finite element analysis[D]. Wuhan: China University of Geosciences, 2013(in Chinese)
[5] T E J Quinn, J L Sullivan, D M Rowson. Origins and development of oxidational wear at low ambient temperatures[J]. Wear, 1984, 94(2): 175–191.
[6] 薛进进, 孙琨, 方亮, 等.30CrMnSiNi2A钢干滑动摩擦磨损特性研究[J].摩擦学学报, 2016, 36(5): 614–621.0 Xue Jinjin, Sun Kun, Fang Liang, et al. Study on dry sliding friction and wear behavior of 30CrMnSiNi2A steel[J]. Tribology, 2016, 36(5): 614–621(in Chinese)
[7] H So. The mechanism of oxidational wear[J]. Wear, 1995, 184(2): 161–167.
[8] 王红侠, 姚冠新.多纤维增强汽车制动器摩擦材料的研制[J].润滑与密封, 2008, 33(10): 88–90.0 Wang Hongxia, Yao Guanxin. Development of multi fiber reinforced friction material for automobile brake[J]. Lubrication and Seal, 2008, 33(10): 88–90(in Chinese)
[9] J Kukutschová, V Roubíček, K Malachová, et al. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact[J]. Wear, 2009, 267(5): 807–817.
[10] PohWah Lee, Peter Filip. Friction and wear of Cu-free and Sb-free environmental friendly automotive brake materials[J]. Wear, 2013, 302(1–2): 1404–1413.
[11] 姚冠新, 夏园, 魏龙庆.多纤维增强汽车制动器摩擦材料的摩擦磨损特性研究[J].润滑与密封, 2010, 35(5): 63–66.0 Yao Guanxin, Xia Yuan, Wei Longqing. Study on friction and wear characteristics of multi fiber reinforced friction material for automobile brake[J]. Lubrication and seal, 2010, 35(5): 63–66(in Chinese)
[12] 张永振, 朱均, 刘维民, 等.不同滑动干摩擦条件下钢/铁摩擦副的摩擦磨损性能与表面形貌特征研究[J].摩擦学学报, 2001, 21(1): 37–41.0 Zhang Yongzhen, Zhu Jun, Liu Weimin, et al. Investigation of topographical characteristics and tribological behavior of compacted graphite iron in sliding against 40Cr steel under different dry sliding conditions[J]. Tribology, 2001, 21(1): 37–41(in Chinese)
[13] Hong U S, Jung S L, Cho K H, et al. Wear mechanism of multiphase friction materials with different phenolic resin matrices[J]. Wear, 2009, 266(7): 739–744.
[14] 刘佐民.M50高速钢高温摩擦磨损特性的研究[J].摩擦学学报, 1997, 17(1): 38–44.0 Liu Zuomin. Friction and wear properties of M50 high speed steelat high temperature[J]. Tribology, 1997, 17(1): 38–44(in Chinese)
[15] Zmago Stadler, Kristoffer Krnel, Tomaz Kosma. Friction and wear of sintered metallic brake linings on a C/C-SiC composite brake disc[J]. Wear, 2008, 265(3–4): 278–285.
[16] Rajesh J J, Bijwe J, Tewari U S. Abrasive wear performance of various polyamides[J]. Wear, 2002, 252(9–10): 769–776.
[17] H So. Characteristics of wear results tested by pin-on-disc atmoderate to high speeds[J]. Tribology International, 1996, 29(5): 415–423.
[18] Hyun-SooHong. The role of atmospheres and lubricants in the oxidational wear of metals[J]. Tribology International, 2002, 35(11): 725–729.
[19] Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gunbore erosion of an advanced artillery system part two: modeling andpredictions[J]. Wear, 2005, 258(1–4): 659–670.
[20] S C Lim. The unlubricated wear of sintered steels[J]. Tribology International, 1987, 20(3): 144–149.
[21] 王云飞, 宋延沛, 王卫超, 等.一种新型导轮材料高速摩擦磨损性能的研究[J].材料热处理技术, 2009, 38(2): 21–23, 27.0 Wang Yunfei, Song Yanpei, Wang Weichao, et al. Study on highspeed friction and wear resistance properties of a new guide pulleymaterial[J]. Material & Heat Treatment, 2009, 38(2): 21–23, 27 (in Chinese)
[22] 邢丽英, 蒋诗才, 周正刚.先进树脂基复合材料制造技术进展[J].复合材料学报, 2013, 30(2): 1–9.0 Xing Liying, Jiang Shicai, Zhou Zhenggang. Development of advanced resin matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 1–9(in Chinese)
[23] Okonkwo P C, Kelly G, Rolfe B F, et al. The effect of sliding speedon the wear of steel-tool steel pairs[J]. Tribology International, 2016, 97(4): 218–227.
[24] 中国标准出版社总编室. GB 5763–2008 汽车用制动器衬片[S].中国标准出版社, 1991 Editorial office of China Standard Publishing House. GB 5763–2008 Brake linings for automobiles[S]. China Standard Press, 1991(in Chinese)
-
期刊类型引用(11)
1. 金孔杰,胡铮,谈辉,王帅,韩明,田金山,乔竹辉,杨军. 铝青铜-Ti_3AlC_2复合材料摩擦学性能与工程耐冲击性能研究. 摩擦学学报(中英文). 2025(01): 35-45 . 百度学术
2. 鄢枫宸,凤维民,宋晖,胡献国. 树脂基复合材料摩擦噪声特性研究. 摩擦学学报(中英文). 2024(06): 811-821 . 百度学术
3. 王晓芳,王劲松,魏愈明. 纳米ZnO增强树脂基摩擦材料的制备和性能研究. 化工新型材料. 2022(05): 176-179 . 百度学术
4. 詹敏,王铮,赵燕伟,任设东,汪磊. 基于产品参数基元网络的变更传播路径优化. 计算机集成制造系统. 2022(08): 2545-2556 . 百度学术
5. 于洋,景卜卜,杨广元,徐桂鹏,原晨康,李争光. 随行振动胶塞用芳纶纤维布复合材料的制备及摩擦磨损性能. 润滑与密封. 2021(02): 100-105 . 百度学术
6. 曹靖雨,鲍久圣,阴妍,姚旺,刘同冈,董慧丽. 制动工况对汽车半金属刹车片磨损性能的影响. 摩擦学学报. 2021(02): 160-168 . 本站查看
7. 李兵,杨俊英,高飞. 缩比摩擦副与1:1摩擦副温度和摩擦因数偏差的试验研究. 中国有色金属学报. 2021(03): 707-714 . 百度学术
8. 杨阳,吴宏,刘伯威,瞿辉,刘咏. 紫铜纤维对汽车摩擦材料性能的影响. 材料工程. 2021(10): 96-103 . 百度学术
9. 江威,何福善,郑开魁,周子涵,江良煊,林有希,高诚辉. 氧化镧改性树脂基复合材料摩擦学性能研究. 润滑与密封. 2019(01): 58-63 . 百度学术
10. 郭卫,张丽苹,柴蓉霞,李凯凯,张汉杰. 销盘硬度对铁基合金摩擦磨损性能影响的研究. 热加工工艺. 2019(04): 87-91+95 . 百度学术
11. 朱文,齐乐华,潘广镇,周宏,李贺军. 煤矿钻杆用玻纤布复合材料摩擦磨损性能研究. 摩擦学学报. 2018(02): 229-237 . 本站查看
其他类型引用(10)